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1 PHOTO-FINISHING OPERATORS
To demonstrate the effect of the described processing blocks in the Main Document, we show examples of

intermediary tap-outs for each block in Figures 1, 2, 3, 4, 5, 6, 7, 8.
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Exposure = -5.0 Exposure = -3.0 Exposure = -1.0 Exposure = 0 Exposure = +1.0 Exposure = +3.0 Exposure = +5.0

Fig. 1. Exposure Tap-outs: The exposure block scales the image intensity by a number of stops. Note that the tap-outs have
been equally brightened for visualization.

Highlights = -100 Highlights = -60 Highlights = -20 Highlights = 0 Highlights = +20 Highlights = +60 Highlights = +100

Fig. 2. Highlights Tap-outs: The highlights slider affects the dynamic range for the bright regions of an image. Observe the
candles in the top row, the sunny areas in the middle row, and the clouds in the bottom row. Note that the tap-outs have
been equally brightened for visualization.
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Shadows = -100 Shadows = -60 Shadows = -20 Shadows = 0 Shadows = +20 Shadows = +60 Shadows = +100

Fig. 3. Shadows Tap-outs: The shadows slider affects the dynamic range for the dark regions of an image. Observe the
shadows in the top row, the structures under the cliff in the middle row, and the walls beneath the ceiling in the bottom row.
Note that the tap-outs have been equally brightened for visualization.

Temp = +2000 Temp = +11600 Temp = +21200 Temp = +30800 Temp = +40400 Temp = +50000Temp = +5000

Fig. 4. Temperature Tap-outs: The temperature slider changes the white balance of an image following a non-linear Kelvin
scale. The temperature is usually set to be around +5000. Note that the tap-outs have been equally brightened for visualization.
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Tint = -150 Tint = -90 Tint = -30 Tint = 0 Temp = +30 Temp = +90 Temp = +150

Fig. 5. Tint Tap-outs: The tint slider changes the white balance along a vector that is orthogonal to the temperature curve.
Note that the tap-outs have been equally brightened for visualization.

Saturation = -100 Saturation = -60 Saturation = -20 Saturation = 0 Saturation = +20 Saturation = +60 Saturation = +100

Fig. 6. Saturation Tap-outs: The saturation slider affects the saturation of colors in the image. Low values of saturation
removes color while high values of saturation accentuate color. Note that the tap-outs have been equally brightened for
visualization.
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Texture = -100 Texture = -60 Texture = -20 Texture = 0 Texture = +20 Texture = +60 Texture = +100

Fig. 7. Texture Tap-outs: The texture slider sharpens or blurs the entire image. Note that the tap-outs have been equally
brightened for visualization.

Contrast = -100 Contrast = -60 Contrast = -20 Contrast = 0 Contrast = +20 Contrast = +60 Contrast = +100

Fig. 8. Contrast Tap-outs: The contrast slider affects the contrast of the image. Note that the tap-outs have been equally
brightened for visualization.

ACM Trans. Graph., Vol. 41, No. 6, Article 238. Publication date: December 2022.



238:6 • Tseng et al.

2 DIFFERENTIABLE PHOTO-FINISHER NETWORK ARCHITECTURE
We describe our network architecture in more detail in Tables 1 and 2.

For camera types we used the Canon EOS DIGITAL REBEL, Canon Powershot S90, Phase One P65+, and the

iPhone 13. The relevant specifications for color balancing are shown in Tables 3, 4, 5, 6. In addition to these

specifications, there are additional specifications such as the Baseline Exposure and the camera profiles. All of

this metadata can be extracted from the DNG.

Table 1. Neural pointwise architecture. In the table, “conv-n(𝑎)-k(𝑏)” represents a convolution layer with 𝑎 output channels
using a 𝑏 × 𝑏 kernel. Each “Leaky Relu” has slope 0.2.

Layer Convolution layer Activation

0 conv-n512-k1 Leaky Relu

1 conv-n256-k1 Leaky Relu

2 conv-n3-k1 -

Table 2. Neural areawise architecture. In the table, “conv-n(𝑎)-k(𝑏)” represents a convolution layer with 𝑎 output channels
using a 𝑏 × 𝑏 kernel. Each “Leaky Relu” has slope 0.2.

Layer Convolution layer Activation

0 conv-n64-k3 Leaky Relu

1 conv-n64-k3 Leaky Relu

2 conv-n64-k3 Leaky Relu

3 conv-n32-k3 Leaky Relu

4 conv-n3-k3 -

Table 3. Canon EOS DIGITAL REBEL Specifications
Calibration Calibration Color Color Forward Forward

Illuminant 1 Illuminant 2 Matrix 1 Matrix 2 Matrix 1 Matrix 2

2850.0 6500.0

[
0.9120 −0.3127 −0.0453
−0.6868 1.4138 0.3011
−0.1708 0.2368 0.9501

] [
0.8250 −0.2044 −0.1127
−0.8092 1.5606 0.2664
−0.2893 0.3453 0.8348

] [
0.6792 0.2075 0.0776
0.3336 0.8297 −0.1633
0.0678 −0.2033 0.9606

] [
0.6792 0.2075 0.0776
0.3336 0.8297 −0.1633
0.0678 −0.2033 0.9606

]

Table 4. Canon Powershot S90 Specifications
Calibration Calibration Color Color Forward Forward

Illuminant 1 Illuminant 2 Matrix 1 Matrix 2 Matrix 1 Matrix 2

2850.0 6500.0

[
2.0380 −1.4279 0.0975
0.0145 0.7942 0.2325
0.0374 0.0172 0.5441

] [
1.2374 −0.5016 −0.1049
−0.1677 0.9902 0.2078
−0.0083 0.0852 0.4683

] [
0.3585 0.5755 0.0303
−0.0481 1.1440 −0.0959
−0.0480 −0.2733 1.1464

] [
0.5118 0.5246 −0.0720
0.0974 1.1959 −0.2933
−0.0082 −0.1431 0.9764

]
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Table 5. Phase One P65+ Specifications
Calibration Calibration Color Color Forward Forward

Illuminant 1 Illuminant 2 Matrix 1 Matrix 2 Matrix 1 Matrix 2

2850.0 6500.0

[
0.7756 0.0244 −0.0761
−0.5300 1.2774 0.2832
−0.0881 0.2622 0.5858

] [
0.8035 0.0435 −0.0962
−0.6001 1.3872 0.2320
−0.1159 0.3065 0.5434

] [
0.8927 −0.1853 0.2569
0.3743 0.7114 −0.0857
−0.0852 −0.7970 1.7073

] [
0.9014 −0.0632 0.1261
0.3949 0.8045 −0.1994
−0.0239 −0.3454 1.1945

]

Table 6. iPhone 13 Specifications
Calibration Calibration Color Color Forward Forward

Illuminant 1 Illuminant 2 Matrix 1 Matrix 2 Matrix 1 Matrix 2

2850.0 6500.0

[
1.3033 −0.6401 −0.2454
−0.4121 1.4405 −0.0522
−0.0387 0.1579 0.5390

] [
1.0197 −0.3937 −0.1386
−0.4354 1.3496 0.0852
−0.1087 0.2457 0.4132

]
N/A N/A
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3 SLIDER REGRESSION VALIDATION ON COMMERCIAL ISPS
We show additional examples of finding sliders that will cause ACR to match the look of commercial ISPs. Results

for the Canon EOS Digital Rebel camera are shown in Figure 9. Results for the iPhone 12 Pro Max are shown in

Figure 10. Results for the Pixel 3 are shown in Figure 11.

Input Raw Camera ISP Output ACR Default OutputACR Output with Regressed SlidersCamera Model

Canon EOS Digital Rebel

Canon EOS Digital Rebel

Canon EOS Digital Rebel

Fig. 9. Additional results on camera ISP approximation with ACR. These results are for a Canon EOS Digital Rebel camera.
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Input Raw Camera ISP Output ACR Default OutputACR Output with Regressed SlidersCamera Model

iPhone

iPhone

iPhone

Fig. 10. Additional results on camera ISP approximation with ACR. These results are for a iPhone 12 Pro Max.
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Input Raw Camera ISP Output ACR Default OutputACR Output with Regressed SlidersCamera Model

Google Pixel

Google Pixel

Google Pixel

Fig. 11. Additional results on camera ISP approximation with ACR. These results are for a Pixel 3.
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4 SLIDER REGRESSION COMPARISON AGAINST 0TH-ORDER OPTIMIZATION METHODS
For the slider regression experiments described in the Main Document, we set the number of queries to ACR to

be a constant � for all methods for a fair comparison. That means that when first-order optimization is run we

query our ACR proxy at most � times. Similarly, CMAES and BayesOpt are allowed to query the true ACR at

most� times. For the benchmark shown in the Main Document we set� = 200. We ran our first-order regression

approach using PyTorch on Nvidia GPUs. For CMAES and BayesOpt we ran them by querying the optimized

build of ACR on CPU, specifically on a MacBook Pro with an Intel i9 core. We implemented CMAES using the

pycma Github repository [Hansen et al. 2019]. The slider ranges are normalized to [0,1], the initial guess is set

to all 0.5, and the standard deviation is set to 0.25. We implemented BayesOpt using the BayesianOptimization

Github repository [Nogueira 2014]. We used 10 initial random guesses. Additional qualitative results are shown

in Figures 12 and 13.

Target Photo-Finishing
1st order regression 

with proposed proxy
0th order regression 

with CMAES
0th order regression 

with BayesOptCamera Model Optimization Curve

Canon EOS Digital Rebel

Target Photo-Finishing
1st order regression 

with proposed proxy
0th order regression 

with CMAES
0th order regression 

with BayesOptCamera Model Optimization Curve

Canon EOS Digital Rebel

Fig. 12. Additional comparisons on slider regression against 0th-order methods. These results are for a Canon EOS Digital
Rebel camera.
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Optimization CurveCamera Model

Phase One P65+

Target Photo-Finishing
1st order regression 

with proposed proxy
0th order regression 

with CMAES
0th order regression 

with BayesOpt

Optimization CurveCamera Model

Phase One P65+

Target Photo-Finishing
1st order regression 

with proposed proxy
0th order regression 

with CMAES
>"# (-1/- -/4-/99$()

;$#6 B'=/9!"#

Optimization CurveCamera Model

Phase One P65+

Target Photo-Finishing
1st order regression 

with proposed proxy
0th order regression 

with CMAES
0th order regression 

with BayesOpt

Optimization CurveCamera Model

Phase One P65+

Target Photo-Finishing
1st order regression 

with proposed proxy
0th order regression 

with CMAES
>"# (-1/- -/4-/99$()

;$#6 B'=/9!"#

Fig. 13. Additional comparisons on slider regression against 0th-order methods. These results are for a Phase One P65+
camera.
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5 COMPARISONS AGAINST RECONFIGISP AND MONOLITHIC/MULTI-STAGE PROXIES
In this section, we compare the proposed method against the recent method of ReconfigISP [Yu et al. 2021].

We highlight that ReconfigISP aims to design new ISPs by rearranging blocks through the use of differentiable

proxies. Although ReconfigISP tackles a different problem and does not address pipelines of similar complexity

to ACR, we ran an additional experiment to compare our full method and the proxy architecture in isolation

against ReconfigISP.

Specifically, we perform two comparison experiments. The first experiment compares the fitting quality of

the proposed proxy model compared to ReconfigISP’s SRCNN proxy on ACR’s white balance and saturation

modules. The results are shown in Figure 15 and Figure 14 and the quantitative PSNR scores are reported in

Table 7. Although the authors of ReconfigISP proposed to use the SRCNN architecture as a “one-size-fits-all”

architecture, it is unable to accurately approximate the complex modules that are used in industrial ISPs such as

ACR. We observed that the approximation accuracy achieved is substantially lower than that which is achieved

by our catered architecture design, both quantitatively and qualitatively.

Our second experiment is a comparison on slider regression where we assess the entire proposed method with

and without the proxy architecture proposed by ReconfigISP [Yu et al. 2021]. To this end, we replace the proxies

in our ACR pipeline proxy with ReconfigISP’s SRCNN proxies. Then we perform the same slider regression

experiment as described in Section 6 of the Main Document. See Figure 16 and Figure 17 for qualitative results

and see Table 8 for quantitative PSNR scores. The low approximation accuracy achieved by the ReconfigISP

approach in turn result in poor performance in downstream tasks such as this slider regression task. In general, we

found that useful slider regression was not possible with the SRCNN proxies, please see the figures for examples.

In contrast, our catered design provides the higher approximation accuracy needed for this slider regression

experiment.

Overall, while the use of differentiable proxies itself has been investigated extensively in the field of neural

architecture search, these additional experiments validate that the specific proxy models and optimization scheme

proposed in our work are essential choices in the proposed method. We confirm that the proxy from ReconfigISP

in isolation or used for slider regression end-to-end fail to approximate complex image processing pipelines.

Table 7. Module fitting comparison against ReconfigISP. Comparison between proposed proxy architecture and SRCNN
architecture of ReconfigISP [Yu et al. 2021]. We report over 10 dB PSNR improvement on the white balance and saturation
modules. This in turn results in better gradients for downstream applications such as slider regression, see Figure 16 and
Figure 17 and Table 8.

White Balance Saturation

PSNR (dB) PSNR (dB)

Proposed 44.5 56.4
ReconfigISP [Yu et al. 2021] 32.5 31.6

ACM Trans. Graph., Vol. 41, No. 6, Article 238. Publication date: December 2022.
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Table 8. Slider regression comparison against ReconfigISP and Monolithic U-Net. We compare slider regression
performance when using our proxies to model ACR versus using ReconfigISP’s SRCNN proxies/a single monolithic U-Net to
model ACR. Due to the lower approximation accuracy of the aforementioned methods, neither achieves the same slider
regression accuracy as we do with our method.

Regression Accuracy

PSNR (dB)

Proposed 43.4
ReconfigISP [Yu et al. 2021] 17.0

Tseng et al. [2019] 11.5

ACM Trans. Graph., Vol. 41, No. 6, Article 238. Publication date: December 2022.
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Target Saturation
(Saturation = -100)

Fit with proposed proxy
(PSNR 53.6 dB)

Fit with ReconfigISP SRCNN
(PSNR 35.8 dB)

Target Saturation
(Saturation = +100)

Fit with proposed proxy
(PSNR 58.9 dB)

Fit with ReconfigISP SRCNN
(PSNR 29.9 dB)

Target Saturation
(Saturation = -60)

Fit with proposed proxy
(PSNR 58.5 dB)

Fit with ReconfigISP SRCNN
(PSNR 39.2 dB)

Target Saturation
(Saturation = +60)

Fit with proposed proxy
(PSNR 53.7 dB)

Fit with ReconfigISP SRCNN
(PSNR 25.7 dB)

Target Saturation
(Saturation = -100)

Fit with proposed proxy
(PSNR 56.8 dB)

Fit with ReconfigISP SRCNN
(PSNR 35.3 dB)

Fig. 14. Saturation comparisons on module fitting against ReconfigISP’s SRCNN proxy. The SRCNN architecture is unable to
accurately model the saturation operation within ACR.
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Fit with proposed proxy
(PSNR 42.5 dB)

Fit with ReconfigISP SRCNN
(PSNR 35.3 dB)

Target White Balance
(Temp = +45200, Tint = +10)

Target White Balance
(Temp = +5000, Tint = +120)

Fit with proposed proxy
(PSNR 45.4 dB)

Fit with ReconfigISP SRCNN
(PSNR 34.1 dB)

Target White Balance
(Temp = +16400, Tint = +10)

Fit with proposed proxy
(PSNR 50.1 dB)

Fit with ReconfigISP SRCNN
(PSNR 34.8 dB)

Target White Balance
(Temp = +5000, Tint = -150)

Fit with proposed proxy
(PSNR 55.2 dB)

Fit with ReconfigISP SRCNN
(PSNR 31.5 dB)

Fig. 15. White Balance comparisons on module fitting against ReconfigISP’s SRCNN proxy. The SRCNN architecture is
unable to accurately model the complex white balancing operation within ACR.
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Fig. 16. Additional comparisons on slider regression against regression with ReconfigISP’s SRCNN proxy/monolithic U-
Net. The low approximation accuracy obtained when using the alternative architectures results in lower slider regression
performance.
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Fig. 17. Additional comparisons on slider regression against regression with ReconfigISP’s SRCNN proxy/monolithic U-
Net. The low approximation accuracy obtained when using the alternative architectures results in lower slider regression
performance.
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6 COMPARISONS AGAINST MONOLITHIC PROXIES
Next, we perform slider regression comparisons against a monolithic U-Net network [Tseng et al. 2019]. The low

approximation accuracy achieved with the monolithic network also results in poor slider regression performance

for the same reasons as with the SRCNN proxies from the previous section. See Figure 16 and Figure 17 for

qualitative results and see Table 8 for quantitative PSNR scores. These results confirm that the regressed sliders

deviate far from the target and, indeed, the vanishing samples problem discussed in the manuscript necessitates

the proposed multi-stage approach.

ACM Trans. Graph., Vol. 41, No. 6, Article 238. Publication date: December 2022.
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7 RAW STYLE TRANSFER
Figure 18 and Figure 19 show additional movie style transfer results on still photographs. The slider encoder,

which is the neural network that predicts the parameters of our differentiable finishing pipeline, is trained

separately for each movie style. See Figure 20 for architecture details. Each collection of style images consists of

14-29 handpicked movie frames, but we only show 9 representative frames from each collection in the figure.

Parameter Linearization. When predicting sliders to match a target style, it is necessary to linearize the effect

of the sliders on the final output image. For example, the temperature slider spans a range of temperatures

from 2000K to 50000K. The effect of the slider value within this range is not linear: A change from 3000K to

4000 K leads to a much larger change in the output than a change from, e.g., 10000 K to 11000 K, both in terms of

perceived color change and absolute pixel value change. Regressing sliders for a certain style without linearizing

the slider leads to larger gradients when the color temperature large (warm), and to smaller gradients when the

color temperature is small (cold). Intuitively, the partial derivative at a single pixel

𝜕S
𝜕IS (𝑥,𝑦)

����
S=S0

(1)

for a given slider setting S0 becomes very large when a large change in the slider position S corresponds to only

a small change in the output image pixel IS (𝑥,𝑦). As a result, training is less stable and the learned temperature

slider is often biased towards colder colors. To combat this, we empirically sample temperature slider values that

are roughly equidistant in perceived color of the finished output. We then fit a 4
th
-degree polynomial to these

values and use this polynomial as input encoding for the proxy’s temperature slider (Figure 21).

Style Loss. For our style loss Lstyle = Lgram + 𝜆1Lluma + 𝜆2Lchroma we found 𝜆1 = 1000 and 𝜆2 = 500 to yield

the best results.

ACM Trans. Graph., Vol. 41, No. 6, Article 238. Publication date: December 2022.
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Style Image Collection
(Movie Frames)

Raw
Input

Photographs

Raw Blade Runner 2049 The Matrix Meridian

(2017) (1999) (2016)

Fig. 18. Additional results (a) on Raw Style Transfer. The left column shows the raw input images, while the other columns
show the style transfer output for different movie styles. The top row shows a subset of images from the collection of style
images that are used to train the slider encoder. The encoder is trained separately for each style, while the differentiable
proxy is pre-trained and fixed during both training and inference.

ACM Trans. Graph., Vol. 41, No. 6, Article 238. Publication date: December 2022.



238:22 • Tseng et al.

Style Image Collection
(Movie Frames)

Raw
Input

Photographs

Raw Blade Runner 2049 The Matrix Meridian

(2017) (1999) (2016)

Fig. 19. Additional results (b) on Raw Style Transfer. The left column shows the raw input images, while the other columns
show the style transfer output for different movie styles. The top row shows a subset of images from the collection of style
images that are used to train the slider encoder. The encoder is trained separately for each style, while the differentiable
proxy is pre-trained and fixed during both training and inference.

ACM Trans. Graph., Vol. 41, No. 6, Article 238. Publication date: December 2022.
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Fig. 20. Slider Encoder architecture. The encoder’s task is to predict a set of sliders (i.e., proxy parameters) to match the
target style. We use a lightweight architecture consisting of a shallow CNN with 4 strided convolutional and pooling layers,
followed by two fully connected layers. The input to the first fully connected layer is the concatenation of the CNN’s output
features map and a color histogram calculated directly on the raw image.

Fig. 21. Linearizing the non-linear temperature slider effect.

ACM Trans. Graph., Vol. 41, No. 6, Article 238. Publication date: December 2022.
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8 ADVERSARIAL PHOTO-FINISHING
In this section, we provide additional qualitative results for adversarial photo-finishing in Figure 22. As discussed

in the Main Document, we leverage the learned proxy function to design an adversarial attack that fools a

classifier run on images photo-finished by a given photographer 𝑆1, while leaving classification on the same raw

image, but finished by other photographers 𝑆2, unaltered. As shown in the figure, the same raw perturbation

𝛿 is transformed to a much stronger adversarial pattern for pipeline 𝑆1 than pipeline 𝑆2, especially near edges

around the object of interest, which explains how the attack deceives 𝑆1 while at the same time maintaining the

performance for 𝑆2.

ACM Trans. Graph., Vol. 41, No. 6, Article 238. Publication date: December 2022.
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Fig. 22. Adversarial Photo-Finishing. Using the proposed proxy function, we learn an adversarial raw perturbation 𝛿 that
map to a stronger adversarial pattern for pipeline 𝑆1 than pipeline 𝑆2, especially at object edges.
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9 GENERALIZATION TO OTHER PIPELINES
Our proposed method generalizes beyond ACR to other photo finishing pipelines. We demonstrate this by

modeling the Darktable pipeline, training neural network proxies of a representative set of processing steps.

Just like with ACR, a framework must be devised that interfaces with the software to generate training data,

automatically processing raw files through a predetermined sequence of stages while tapping out intermediaries

from between those stages. Otherwise, the overall network architectures remain unchanged.

The Darktable pipeline is divided into modules, roughly analogous to processing steps in ACR. Photos are

finished by selecting and arranging modules into a precise, user-defined order, called the pixelpipe, and processing

input files in that order. We generated training data using a pixelpipe of 12 modules, chosen either because they

are permanent fixtures of the Darktable pipeline that should not be removed, or because they are ubiquitous

photo finishing operations that generalize well to other pipelines. The 12 modules in the pixelpipe are defined as

follows:

(1) Rawprepare: This module is automatically active for any raw input; it simply defines camera-specific black

and white point parameters before demosaicing.

(2) Demosaic: Sensor cells in digital cameras cannot detect color, only lightness. Colors are recorded by covering

cells with color filters, arranged in a mosaic pattern (often the Bayer filter array). Full color images can

then be reconstructed by applying algorithms to “demosaic” these filter recordings by interpolating from

neighboring cells. This module allows the user to switch between different demosaicking algorithms.

(3) Colorin: This module remaps from the color space of the image source to a common working color space

that can be shared between other modules as the image is processed.

(4) Colorout: This module remaps the image color space to sRGB before export.

(5) Gamma: This module applies a nonlinear operation that takes advantage of the nonlinear perception of

light by humans to adjust luminance or tristimulus values.

(6) Temperature: Temperature, along with tint, are both used to adjust the white balance in an image by

adjusting for a hue along the blue-amber axis or the green-magenta axis, respectively. This module allows

for the direct setting of RGB color channel coefficients so as to change an image’s white balance.

(7) Highlights: Highlight clipping occurs when digital cameras capture input that is more intense than the

camera’s maximum clipping threshold - all input above this threshold is clipped down to the maximum

value. This module attempts to reconstruct the lost information in pixels where one or more RGB channels

has been clipped. The user can choose between 3 different methods of estimating the original photographed

scene.

(8) Sharpen: This module sharpens input images by using an UnSharp mask to increase the contrast around

edges. Users can control the radius of the gaussian blur used with the mask, the amount of sharpening

done, and the threshold contrast difference above which sharpening occurs.

(9) Filmicrgb: This module is designed to remap the tonal range of a captured scene to the range of the given

display in order to emulate classic film. Users have control over a myriad of sliders, grouped into the

parameters of the input scene, highlight reconstruction, artistic enhancements, and parameters of the

output display.

(10) Exposure: This module can be used to adjust the overall brightness of an image. Users can toggle between

manual mode, where they set exposure, black level, and clipping threshold parameters themselves, or
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automatic mode, where exposure parameters are automatically set by analyzing the image’s histogram and

adjusting such that a specified percentile is shifted to a given target zone.

(11) Flip: This module flips the input image along either the horizontal, vertical, or both axes.

(12) Colorbalancergb: This is an advanced color-grading module that can perform precise operations on the

RGB color space. It has tunable parameters for hue shift, global vibrance, contrast, linear chroma grading,

perceptual saturation grading, perceptual brilliance grading, masking, and more.

In the absence of a developer tool to access intermediary image tap-outs, we developed a Python wrapper

function for interfacing with the Darktable pipeline and modified its source code to dump intermediaries. Similar

to other pipelines, Darktable is a nondestructive photo finisher, storing changes entirely within XMP sidecar files;

these represent a sequence of operations that can be performed on any raw file to generate a finished output

image. More precisely, XMP files encode a pixelpipe, specifying the order of processing steps as well as their

slider values and blend parameters. By programmatically generating XMP files and passing them into Darktable

with the same input images, it becomes possible to automatically generate large training sets for proxy networks

while only interfacing with the pipeline via sidecar files. Therefore, our Python wrapper is very straightforward.

We create a format string that corresponds to the XMP of our 12-module pixelpipe, with all salient parameters

set as variables. The script then sweeps through all of the relevant slider values for each step, inserting the

parameter values into the string. Darktable encodes parameters for each module by concatenating their float

values together and converting to hexadecimal. The XMP format string also contains a binary “enabled” flag

for each of the process modules, which too is set to a variable for non-essential stages. This allows our script

to progressively enable our pixelpipe stages one-by-one, rendering all intermediary images. Darktable has a

command-line interface (CLI) that can process a raw file given an XMP sidecar without using the GUI. Once

the format string is complete, it is written to a temporary file that is passed as input to the CLI. See Figure 23

for examples of function outputs. The wrapper function was then tested on both a Windows and Linux build

of Darktable. The former was done locally, while the latter was made possible by creating a Docker image of a

Linux system and building Darktable in the image.

However, Darktable’s source code does not support the tap-out of intermediary images between processing

modules. We introduce this capability by creating a new function that dumps out images between steps, and

modify the C files for each module in our chosen pixelpipe to call this function after they process their input.

We chose to dump the intermediaries as ImageStack TMP files, as they could encode Darktable’s float32 buffer

format; these are later converted to TIFF files by a separate Python script.
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Fig. 23. Intermediary tap-outs from the Darktable CLI Python wrapper function, sweeping through the contrast and sharpness
slider range.
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