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Supplementary Note 1: Metasurface Specification

We describe our metasurface specifications in comparison to existing designs in Supplementary
Table 1. The proposed metasurface imager demonstrates a large aperture size of 500 µm, which
is more than four times larger in area than other works, while maintaining a low f-number of 2.
Our meta-optic is polarization insensitive and enables imaging across the full visible spectrum
of 400 nm to 700 nm. We evaluate this operating bandwidth by computing the PSF’s correlation
coefficient (Supplementary Fig. 1) with wavelength and defining the bandwidth as the range across
which the coefficient remains above 0.5. This metric informs us how similar the PSF is as a
function of wavelength, which is critical given that the PSF can only be experimentally calibrated
at discrete wavelengths even if broadband light is captured by the meta-optic while imaging. A
higher correlation coefficient implies a greater similarity and facilitates robust reconstruction. The
wavelength range over which the coefficient exceeds 0.5 thus defines the operating bandwidth. This
coefficient is computed as a normalized inner product of the PSF with itself at a fixed reference
wavelength. In this analysis, we set the reference wavelength to 511 nm.
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Supplementary Table 1: Metasurface and imaging specifications of the proposed approach
and existing methods. The proposed neural nano-optics and deconvolution method are
learned end-to-end using first-order stochastic optimization and image quality losses. In
contrast, prior works relied on traditional hand-crafted design metrics. The physical nano-
optic demonstrates a significant increase in aperture size and FOV while maintaining low
f-number, operates within the visible spectrum, and is insensitive to the polarization state of
the light field. Our large aperture was designed by jointly optimizing an order of magnitude
more nano-scatterers while remaining computationally efficient as the entire learning pro-
cess takes a total of 18 hours.

Method Aperture f/# # of Nano- Pitch FOV Bandwidth Polarization Design Strategy Notes
(µm) Scatterers (nm) (nm)

Neural
Nano-Optics 500 2 1.6× 106 350 40◦ 400− 700 Insensitive Neural Design

Ndao et al.1 20 7.5 2.3× 103 370 8◦ 640− 1200 Insensitive Phase Slope and
Intercept Method

1

Chen et al.2 26.4 2.54 3.4× 103 400 22◦ 460− 700 Insensitive Dispersion
engineering

1

Colburn
et al.3

200 1 1.6× 105 443 20◦ 400− 700 Insensitive Computational
imaging

2

Chen et al.4 220 25 2.4× 105 400 30◦ 470− 670 Sensitive Dispersion
engineering

3

Wang et al.5 50 4.7 5.2× 104 120 12◦ 400− 660 Sensitive Dispersion
engineering

1,4

Shrestha
et al.6

200 4 N/A N/A 14◦ 1200− 1650 Insensitive Dispersion
engineering

1,5

Khorasaninejad
et al.7

200 2.425 1.3× 105 480 23◦ 490− 550 Sensitive Dispersion
engineering

1

Wang et al.8 55.55 1.8 8.0× 103 550 31◦ 1200− 1680 Sensitive Dispersion
engineering

1

Arbabi et al.9 240 3.54 8.3× 104 740 16◦ 1450− 1590 Sensitive Dispersion
engineering

1

1FOV was not reported so we estimated FOV assuming aperture diameter equals sensor size.
2FOV is determined from off-axis simulations which were taken up to ±10◦.
3FOV is determined for a Strehl ratio of 0.8.
4In this design, the reported pitch corresponds to the side length in a hexagonal lattice.
5Reported for the M2 design, which has the largest aperture among the designs proposed in this work.
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Supplementary Figure 1: Simulated PSF correlation coefficient for our neural nano-optic,
where the range over which the coefficient exceeds 0.5 determines the operating bandwidth.
Our design supports imaging over the visible spectrum from 400 nm to 700 nm.
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Supplementary Note 2: Evaluating Design Capability

In achromatic metasurface design, there are several competing metrics that when individually op-
timized will come at the expense of the others. For dispersion-engineered meta-optics, for ex-
ample, one can achieve low f-number but only by reducing the operating bandwidth, having a
smaller aperture diameter, or by doing both of these. Reducing aperture size, however, limits light
collection, whereas a narrower operating bandwidth would cause strong chromatic aberrations. If
the f-number is instead increased, it relaxes the constraints on bandwidth and diameter but at the
cost of image resolution. Currently, however, there is no clear metric for simultaneously evaluating
all of these competing performance requirements and as such we define a custom quantity, which
we term the Diffractive Lens Achromatic Capacity (DLAC), which is the product of the Fresnel
Number and Fractional Bandwidth. Maximizing the Fresnel Number, which for paraxial systems
is proportional to the NA-aperture product, captures the notion of how maintaining both a low
f-number and large aperture diameter is challenging. The fractional bandwidth, the wavelength
range divided by center wavelength, evaluates a normalized version of the bandwidth for equal
comparison of different designs. For achromatic meta-optics, maximizing either Fresnel Num-
ber or fractional bandwidth comes at the expense of the other and by combining these into a single
quantity, we can better evaluate the overall capability of a design. A large DLAC is only achievable
by simultaneously maintaining low f-number, a large aperture relative to the center wavelength, and
a wide bandwidth relative to the center wavelength. Even without considering the computational
reconstruction, we achieve a DLAC of 247.9, outperforming all previously demonstrated metasur-
face imaging systems. Note that DLAC does not include the computational reconstruction, which
we measure at the output of the entire imaging pipeline in the remainder of this document.
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Supplementary Table 2: Comparison of existing achromatic metasurface designs using
our Diffractive Lens Achromatic Capacity (DLAC) metric. The DLAC is a dimensionless
parameter given by the product of Fresnel Number and Fractional Bandwidth. Even though
this metric does not consider the quality of the computational reconstruction, our neural
nano-optic design already outperforms all previously demonstrated works.

Method DLAC Design Strategy Notes

Neural
Nano-Optics 247.9 Neural Design

Ndao et al.1 1.8
Phase Slope and
Intercept Method

Chen et al.2 7.4
Dispersion
engineering

Colburn
et al.3

198.3
Computational
imaging

Chen et al.4 5.4
Dispersion
engineering

Wang et al.5 9.8
Dispersion
engineering

Shrestha
et al.6

11.1
Dispersion
engineering

1

Khorasaninejad
et al.7

18.3
Dispersion
engineering

Wang et al.8 7.1
Dispersion
engineering

Arbabi et al.9 4.1
Dispersion
engineering

1Reported for the M2 design, which has the largest aperture among the designs proposed in this work.
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Supplementary Note 3: Enabling Commodity Large Aperture Meta-Optics

High-throughput Fabrication for Commodifying Meta-Optics The meta-optics in the visible
wavelength range comprise sub-micron feature scatterers that are difficult to reliably fabricate in a
high-throughput manner. Most existing metasurfaces are fabricated via electron-beam lithography,
which is low throughput and cannot be used for large numbers of metasurfaces – the cost and
time for fabrication grows rapidly as the pattern area increases. Photolithography could be used
in place of electron-beam tools, but most traditional photolithography techniques (e.g., contact
lithography or laser direct writing) have a resolution limit exceeding 1 µm. Furthermore, most dis-
persion engineering metasurfaces rely on scatterers comprising multiple, coupled nano-antennas
per sub-wavelength unit cell, requiring features even smaller than those of conventional meta-
optics, complicating manufacturing and limiting it to only the most high-cost and state-of-the-
art manufacturing equipment that is not nearly as widely available. Rather than relying on such
scatterer designs and traditional photolithography systems, mass manufacturing will be achiev-
able by leveraging established, high-throughput processes as well as by exploiting our end-to-end
design framework with relaxed feature sizes compared to those often found in dispersion engin-
eering designs. While our scatterers consist of a single nanopost with feature size within 100 nm
to 290 nm, dispersion engineering approaches often exploit multiple nanostructures per unit cell,
entailing smaller feature sizes which frequently go down to 50 nm or less to still satisfy the sub-
wavelength pitch characteristic of a metasurface. Instead of using electron-beam lithography, deep
ultraviolet (DUV) or immersion lithography systems can achieve feature sizes of ∼100 nm but can
simultaneously accommodate manufacturing of large numbers of metasurfaces across batches of
wafers. These processes are standard in integrated circuits (IC) manufacturing and commodifica-
tion of meta-optics could leverage these well-developed techniques.

Achieving Larger Aperture Metasurface Fabrication Although we used a relatively large 500 µm
aperture in this work, at four times the area of the largest previous full-color metasurface im-
ager, designing even larger aperture sizes will allow for greater light collection and could enable
decimeter-scale or meter-scale optics for telescopes. However, even commercial DUV and im-
mersion lithography systems have a limit on die size, which is too small for a single mask to
accommodate a decimeter-scale metasurface aperture. Step-and-repeat lithography is the work-
horse for patterning of sub-micron features in the IC industry. A mask pattern is projected via
optical reduction onto a wafer substrate. The stepper repeats this exposure many times, creating
many identically patterned chips on a single substrate. After dicing, each chip is a self-contained
device whose size ranges from a few millimeters to more than a centimeter. Instead of conventional
step-and-repeat, one could apply a “step-and-stitch” technique capable of creating continuous pat-
terns consisting of multiple individual exposures. This technique would require specially designed
masks that seamlessly match up along the borders with their respective neighbors. Stitching is pos-
sible due to the extremely precise positioning capability (single-digit nanometer range) of modern
lithography steppers. Lastly, even though our forward model is three orders of magnitude more
memory efficient than FDTD, efforts to design even larger optics were hampered by limited GPU
memory, which can be mitigated by exploiting symmetry in the metasurface mask in the future.
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Supplementary Note 4: Differentiable Proxy-Based Metasurface Image Formation

Metasurface Phase Determination and Point Spread Function Calculation The proposed dif-
ferentiable metasurface model approximates the optical response of the scatterers and then lever-
ages Fourier optics for memory-efficient light propagation (Supplementary Fig. 3). To design the
nanoposts, we calculated transmission coefficients using rigorous coupled-wave analysis (RCWA).
Our design consists of square cross section, silicon nitride (n = 2.0) nanoposts with a thickness of
705 nm and a pitch of 350 nm atop a fused silica (n = 1.5) substrate also with thickness 705 nm in
simulation. As discussed in the main manuscript, to ensure a differentiable mapping from phase to
duty cycle, the phase as a function of duty cycle must be injective. To ensure this, we employ an
effective index approximation of the unit cell. While this calculates an approximate transmission
coefficient by only considering the DC component of the permittivity to ensure differentiability
with respect to the proxy phase, the transmission coefficient of our design does not change ap-
preciably upon including higher Fourier orders with the exception of a few resonances (Supple-
mentary Fig. 2). The simulated full metasurfaces of the main manuscript were modeled by means
of the band-limited angular spectrum method where we map the RCWA-computed transmission
coefficient to each pixel.

To enable differentiation with respect to duty cycle, we fit this phase data to a polynomial
proxy function of the form

d(r) =
N∑
i=0

bi

(
φ(r)

2π

)2i

, (1)

where d(r) is the required duty cycle at a position r from the optical axis on the metasurface, φ(r)
is the desired phase at that same position for the nominal wavelength λ0, and the parameters bi are
fitted. We set λ0 = 452 nm for all of our experiments. Note that φ(r) is the same as defined in
Eq. 1 of the main manuscript. For our square nanoposts we only require expansion up to N = 2.
After applying this inverse mapping to determine the required physical structure, we compute the
phase for the other wavelengths by means of a second proxy function that maps a combination
of the nanopost duty cycle and incident wavelength to an imparted phase delay. We model this
again by fitting the pre-computed transmission coefficient of our scatterers under an effective index
approximation but this time with a polynomial of the form

φ̃(r, λ) =
N∑
n=0

M∑
m=0

cnmd(r)nλm, (2)

where λ is a non-nominal wavelength and N and M are the number of orders in duty cycle and
wavelength respectively. In the design used for this work, the only non-zero coefficients correspond
to terms where the combined degree of d and φ is 2 or lower.

Essential in accurately modeling our metasurface is the quality of these fits. Using linear least
squares, we find that the determined polynomial fits well to the underlying transmission coefficient
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data CMETA, as is indicated by their agreement shown in Supplementary Fig. 3. The fitted polynomial
coefficients for the inverse and forward mappings are presented in Supplementary Tables 3 and 4,
respectively. The computed R-squared coefficients for the inverse and forward mappings were
0.9994 and 0.9998, respectively.

The fixed parameters CMETA determine our metasurface proxy function fMETA which operates
on the optimizable parameters PMETA = {ai|i = 1, . . . , n}, which as described in the main manu-
script are the n coefficients of the metasurface phase function. Thus, given an input field angle θ
our fMETA computes a spatially variant PSF as

PSFθ = fMETA(θ,PMETA, CMETA). (3)

Differentiable Sensor Noise We model the sensor noise as a per-pixel Gaussian-Poisson noise.
Specifically, if x ∈ [0, 1] is the input signal at some sensor pixel location and fSENSOR(x) is the
noisy measurement, then

fSENSOR(x) = ηg(x, σg) + ηp(x, ap), (4)

where ηg(x, σg) ∼ N (x, σ2
g) is the Gaussian noise component and ηp(x, ap) ∼ P(x/ap) is the

Poisson noise component. Thus, our fSENSOR function is a-priori determined by the noise parameters
CSENSOR = {σg, ap}. We use the calibration method described in Foi et al.10 to estimate these
parameters. We determined σg = 1 × 10−5 and ap = 4 × 10−5 and we use these values for all of
our optimization experiments and synthetic evaluations.

In order to employ auto-differentiation for our end-to-end optimization pipeline, we require
that gradients can flow from the endpoint loss all the way back to the meta-optic. For end-to-
end differentiability we thus implement every step of our image formation and deconvolution in a
differentiable manner. This includes the sensor noise as well, so we utilized several techniques for
incorporating differentiability into these stochastic functions. Specifically, differentiable Gaussian
noise is implemented using the Reparameterization trick11:

ηg(x) = x+ σ2
gηg(0, 1). (5)

As gradients need to flow through x to the meta-optic parameters, moving it outside of the stochastic
function ηg permits differentiability. Differentiable Poisson noise is realized using the Score-
Gradient trick12, which we implement in TensorFlow 2 as follows:

import tensorflow_probability as tfp
p = tfp.distributions.Poisson(rate=x/a_p, validate_args=True)
sampled = tfp.monte_carlo.expectation(f=lambda z:z,

samples=p.sample(1), log_prob=p.log_prob,
use_reparameterization=False)

eta_p = sampled*a_p
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Expressing sensor noise as a differentiable step within the image formation pipeline confers an-
other advantage in that we do not require hand-engineered regularizers in our loss function, instead
our neural nano-optic naturally learns how to accommodate for measurement error. Traditional
hand-crafted regularizers such as total variation often blur out high frequency details. In addition
to the descriptions provided in this document, we refer the reader to the public code repository.

Feature Space Deconvolution As described in the main manuscript, we employ a fully differ-
entiable neural deconvolution method fDECONV that utilizes a novel feature propagation scheme:

fDECONV(I) = fDE(fZ→W(fFE(I))). (6)

Each function component consists of optimizable parameters. Specifically, fFE and fDE both consist
of convolutional neural networks (CNN) and their optimizable parameters PFE and PDE consist of
neural network weights. The optimizable parameters PZ→W for fZ→W depend on the choice of
feature propagator, for example a Wiener filter PZ→W would consist of the SNR parameter. All of
these parameters, given by PDECONV = PFE ∪PZ→W ∪PDE, define our deconvolution algorithm. For
an input image I, the deconvolved output image O is given by

O = fDECONV(I,PSF,PDECONV). (7)

All of PDECONV is jointly optimized together with PMETA during our end-to-end design.

Spatially Varying Image Formation We simulate the spatially varying aberrations incurred by
the PSFs in a patch-based manner. We first divide the FOV into an M ×M grid of patches. Then
we employ an offset PSF design procedure as described below:

1. Let PSFθ be the PSF for a single patch of our M ×M grid at field angle θ. Let PSFθ+ε be
the PSF at field angle θ + ε, where ε is a small angle. PSFθ+ε is effectively the PSF at the
outer periphery of a patch.

2. For the forward pass we use PSFθ+ε but for deconvolution we use PSFθ. This process acts
as a regularization to the PSF design, the variance between PSFθ and PSFθ+ε cannot be too
severe.

3. Repeat for other values of θ to cover the whole M ×M grid. Compute the loss for each
deconvolved patch individually and then backpropagate the total loss to all trainable para-
meters.

See Supplementary Fig. 4 for an illustration of this offset PSF procedure. For our experiments we
set M = 5 and ε = 5◦.
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After design and fabrication, we account for mismatches between the PSF simulated by our
proxy model and the experimentally measured PSF by performing a PSF calibration step. See
Supplementary Note 7 for PSF measurement details. We finetune our deconvolution algorithm
using the measured PSFs.

Fully Differentiable Metasurface Imaging Altogether, our metasurface imaging pipeline al-
lows us to apply first-order stochastic gradient optimization to jointly optimize for PMETA and
PDECONV that will minimize our user-defined endpoint loss function L. In our case, given an in-
put RGB image I we want parameter values that will recover I with high fidelity. As such, our
endpoint loss L will measure perceptual image quality between I and the recovered image O, see
Supplementary Note 6 for how we define this loss function. During the end-to-end design stage
our image formation is defined using the previously described offset PSF field angle scheme

PSFθ = fMETA(θ,PMETA, CMETA), PSFθ+ε = fMETA(θ + ε,PMETA, CMETA) (8)

Oθ = fDECONV(fSENSOR(Iθ ∗ PSFθ+ε, CSENSOR),PSFθ,PDECONV)), (9)

where Iθ is the image patch of I corresponding to field angle θ and ∗ is the convolution operator.
We then apply auto-differentiation optimizers to solve for the following

{P∗META,P∗DECONV} = argmin
PMETA,PDECONV

M∑
i=1

∑
θ

L(O
(i)
θ , I

(i)
θ ), (10)

whereM is the number of training samples. Once training is complete we useP∗META to manufacture
our meta-optic. We finetune P∗DECONV using the measured PSFs of the fabricated meta-optic.

Summary of Parameters We summarize all parameters used in our image formation and
deconvolution in Supplementary Table 5. Altogether, our pipeline optimizes two sets of paramet-
ers PMETA and PDECONV. PMETA consists of the parameters that determine the phase profile of the
metasurface optic and PDECONV are the parameters corresponding to the reconstruction algorithm.
We also make use of experimentally measured or calibrated parameters that are fixed during the
optimization. These include the polynomial coefficients CMETA for metasurface proxy model and
the sensor noise parameters CSENSOR.
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Supplementary Table 3: Fitted polynomial coefficients for the inverse, phase-to-structure
mapping.

Coefficient b0 b1 b2

Value −0.1484 0.6809 0.2923

Supplementary Table 4: Fitted polynomial coefficients for the forward, structure-to-phase
mapping. Note that c12, c21, c22 are all zero.

Coefficient c00 c01 c10 c02 c11 c20

(nm−1) (nm−2) (nm−1)

Value 6.051 −2.03× 10−2 2.26 1.37× 10−5 −2.95× 10−3 0.797

Supplementary Table 5: Summary of parameters used for image formation and decon-
volution. We differentiate between optimizable and fixed parameters. See Supplementary
Fig. 4 for an illustration of how these parameters are connected together.

Parameter Set Parameters Optimizable Notes

CMETA
{b0, b1, b2}
{c00, c01, c10, c02, c11, c20}

No See Supplementary Tables 3 and 4.

PMETA {a0, . . . , an} Yes See Eq. 1 in main manuscript.

CSENSOR {ap, σg} No Experimentally measured.

PDECONV PFE ∪ PZ→W ∪ PDE Yes

PFE and PDE consist of neural network parameters
while PZ→W consists of parameters specific to the
feature propagator (e.g. the SNR parameter
for a Wiener filter).
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Supplementary Figure 2: Metasurface scatterer simulation. The transmission coefficent
as a function of duty cycle was calculated using rigorous coupled-wave analysis. By con-
sidering the scatterer’s permittivity with only the DC Fourier component, we neglect con-
tributions from higher order Fourier terms but still capture an approximate transmission
coefficient that closely follows the response with additional Fourier terms. Here, N = 1
denotes the effective index approximation-based transmission coefficient phase used in our
design.
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Supplementary Figure 3: Differentiable proxy-based metasurface simulation. To determ-
ine the metasurface phase at all simulated wavelengths, we sequentially apply differentiable
inverse and forward phase mappings. From a desired phase at the nominal wavelength, we
first compute the required scatterer distribution, mapping from phase to the structure in an
inverse manner. With the structure defined, we then apply the forward mapping, convert-
ing the duty cycles into phases for the multiple wavelengths used in the end-to-end-design.
With the phase at each wavelength determined, we then diffract the electric fields to the
image plane and we can compute the incoherent PSF by taking the modulus squared.
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Supplementary Figure 4: Design stage image formation and deconvolution. We minimize
PSF spatial variance within each patch during the end-to-end design stage by using PSFθ+ε
for the image formation (forward pass) and PSFθ for the non-blind deconvolution.
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Supplementary Note 5: Neural Feature Propagation

Correcting for the severe chromatic aberrations incurred by a meta-optic requires a robust decon-
volution algorithm. To tackle this problem, we design a deconvolution approach that exploits the
advantages of both traditional deconvolution methods and deep neural networks. Traditional de-
convolution methods, such as Wiener filtering or optimization-based deconvolution13, 14, rely on
an analytical model of the image formation process. As a result, these methods are capable of
deconvolving diverse aberrations and generalize well to unseen datasets – simply by adjusting the
forward model parameters of the PSF and noise model. However, they often rely on naive regular-
izers such as L1 total variation14, 15. In contrast, recent deep learning methods have demonstrated
high-quality reconstruction results for specific datasets16 but fail to generalize to experimental test
datasets, including data with large PSFs of severely aberrated optics as we will show below.

We overcome the limitations of these two directions by combining learned feature extraction
with model-based deconvolution that achieves three key outcomes: improved generalization com-
pared to supervised deep learning methods, high-frequency reconstruction results, and robustness
to sensor noise. As described in the main manuscript, we employ a neural feature propagation
architecture that comprises three stages: a multi-scale feature extractor fFE, feature propagation
through inverse filters fZ→W (where Z are extracted features and W are the corresponding decon-
volved features), and multi-scale decoding fDE. Formally, our feature propagation network per-
forms the following:

O = fDE
↑

Decoder

(

Feature Propagation
↓

fZ→W ( fFE
↑

Feature Extraction

( I ) , PSF ) ), (11)

where I is the raw sensor measurement and O is the output image. Any differentiable deconvolu-
tion method, where the outputs are differentiable with respect to the inputs, can be used for fZ→W.
This includes blind deconvolution methods that do not utilize the PSF. We use Wiener filtering with
edgetapering17 to reduce boundary artifacts. An overview of our network architecture is shown in
Supplementary Fig. 5 and an explicit description can be found in Supplementary Tables 6, 7, 8.
Note that all stages fFE, fZ→W, fDE are jointly optimized together with the meta-optic parameters,
so the SNR parameter that is used for Wiener filtering in fZ→W is also optimized.

Our feature extractor fFE employs a series of convolutional neural network (CNN) layers to
determine image features at the original resolution and also at 2× and 4× downsampled resolu-
tions. Performing feature extraction at lower resolutions allows the network to determine features
at a global level while the images extracted at the original resolution focus on local details. To
accommodate the different image resolutions, we bilinearly resize the PSF to 1×, 2×, 4× down-
sampled resolutions before feeding to the feature propagator. The feature extractor also converts a
3-channel RGB image into feature tensors with 15, 30, 60 channels corresponding to 1×, 2×, 4×
resolution. We repeat our 3-channel RGB PSF to match the same number of channels as shown in
Supplementary Fig. 5. After passing through fZ→W the processed image tensors are combined by
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Supplementary Figure 5: Architecture of neural feature propagator network. The feature
extractor fFE uses CNNs to extract features at 1×, 2×, 4× downsampled resolutions, which
allows for learning of global and local features. The learned features are shared across the
different resolutions. After extraction, the feature tensors are propagated through fZ→W.
The PSF is used by the feature propagator for non-blind deconvolution, and the PSF is
resized for different image resolutions. After feature propagation, the decoder fDE again
applies CNNs to fuse the feature tensors into a single RGB reconstruction. Our decoder also
shares information across image resolutions. Skip connections (concatenation of previous
feature tensors) are employed by both fFE and fDE to better shuttle image features across the
network. In the figure, the number of feature channels is shown above the operation layers.

our decoder fDE. fDE also operates at multiple resolutions and progressively fuses global informa-
tion obtained at smaller resolutions into higher resolution feature maps. All of the feature tensors
are eventually processed into a single 3-channel RGB output image. We employ skip connections
throughout fFE and fDE as they have been shown to improve image feature learning by shuttling
information from earlier feature layers18.
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Supplementary Table 6: Neural feature propagator network architecture for the feature
extractor. In the table, “conv-c(a)-k(b)-s(c)-LRelu” represents a convolution layer with a
output channels, a b×b kernel window, using stride c, followed by a Leaky Relu (α = 0.02)
activation function. We use convT to denote transposed convolution.

Neural Feature Propagator (Feature Extractor fFE)

Layer Name Layer Type Input Layer

Input RGB
down_l0 conv-c15-k7-s1-LRelu Input
down_l0 conv-c15-k7-s1-LRelu down_l0
down_l1 conv-c30-k5-s2-LRelu down_l0
down_l1 conv-c30-k3-s1-LRelu down_l1
down_l1 conv-c30-k3-s1-LRelu down_l1
down_l2 conv-c60-k5-s2-LRelu down_l1
down_l2 conv-c60-k3-s1-LRelu down_l2
down_l2 conv-c60-k3-s1-LRelu down_l2

conv_l2_k0 conv-c60-k3-s1-LRelu down_l2
conv_l2_k1 conv-c60-k3-s1-LRelu conv_l2_k0
conv_l2_k2 conv-c60-k3-s1-LRelu Concat([conv_l2_k0, conv_l2_k1])
conv_l2_k3 conv-c60-k3-s1-LRelu conv_l2_k2
conv_l2_k4 conv-c60-k3-s1-LRelu conv_l2_k3
conv_l2_k5 conv-c60-k3-s1-LRelu conv_l2_k4

conv_l1_k0 conv-c30-k3-s1-LRelu down_l1
conv_l1_k1 conv-c30-k3-s1-LRelu conv_l1_k0
conv_l1_k2 conv-c30-k3-s1-LRelu Concat([conv_l1_k0, conv_l1_k1])
conv_l1_k3 conv-c30-k3-s1-LRelu conv_l1_k2
conv_l1_k4 conv-c30-k3-s1-LRelu conv_l1_k3
conv_l1_k5 conv-c30-k3-s1-LRelu conv_l1_k4
up_l2 convT-c30-k2-s2-LRelu conv_l2_k5
conv_l1_k6 conv-c30-k3-s1-LRelu Concat([up_l2, conv_l1_k5])
conv_l1_k7 conv-c30-k3-s1-LRelu conv_l1_k6

conv_l0_k0 conv-c15-k3-s1-LRelu down_l0
conv_l0_k1 conv-c15-k3-s1-LRelu conv_l0_k0
conv_l0_k2 conv-c15-k3-s1-LRelu Concat([conv_l1_k0, conv_l0_k1])
conv_l0_k3 conv-c15-k3-s1-LRelu conv_l0_k2
conv_l0_k4 conv-c15-k3-s1-LRelu conv_l0_k3
conv_l0_k5 conv-c15-k3-s1-LRelu conv_l0_k4
up_l1 convT-c15-k2-s2-LRelu conv_l1_k5
conv_l0_k6 conv-c15-k3-s1-LRelu Concat([up_l1, conv_l0_k5])
conv_l0_k7 conv-c15-k3-s1-LRelu conv_l0_k6
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Supplementary Table 7: Neural feature propagator network architecture for the feature
propagator. This network takes in layers from the feature extractor as input.

Neural Feature Propagator (Feature Propagator fZ→W)

Layer Name Layer Type Input Layer

PSF_1x RGB PSF
PSF_2x 2× downsampled RGB PSF
PSF_4x 4× downsampled RGB PSF
fp_l0 Feature Propagator PSF_1x and conv_l0_k7
fp_l1 Feature Propagator PSF_2x and conv_l1_k7
fp_l2 Feature Propagator PSF_4x and conv_l2_k5

Supplementary Table 8: Neural feature propagator network architecture for the decoder.
In the table, “conv-c(a)-k(b)-s(c)-LRelu” represents a convolution layer with a output chan-
nels, a b× b kernel window, using stride c, followed by a Leaky Relu (α = 0.02) activation
function. We use convT to denote transposed convolution. This network takes in layers
from the feature propagator as input.

Neural Feature Propagator (Decoder fDE)

Layer Name Layer Type Input Layer

conv_l0_k0 conv-c30-k5-s1-LRelu fp_l0
conv_l0_k1 conv-c30-k5-s1-LRelu conv_l0_k0
down_l0 conv-c30-k5-s2-LRelu conv_l0_k1
conv_l1_k0 conv-c60-k3-s1-LRelu Concat([fp_l1, down_l0])
conv_l1_k1 conv-c60-k3-s1-LRelu conv_l1_k0
down_l1 conv-c60-k3-s2-LRelu conv_l1_k1
conv_l2_k0 conv-c120-k3-s1-LRelu Concat([fp_l2, down_l1])
conv_l2_k1 conv-c120-k3-s1-LRelu conv_l2_k0
conv_l2_k2 conv-c120-k3-s1-LRelu Concat([conv_l2_k0, fp_l2, down_l1])
conv_l2_k3 conv-c120-k3-s1-LRelu conv_l2_k2
up_l2 convT-c60-k2-s2-LRelu conv_l2_k3
conv_l1_k2 conv-c60-k3-s1-LRelu Concat([conv_l1_k1, up_l2])
conv_l1_k3 conv-c60-k3-s1-LRelu conv_l1_k2
up_l1 convT-c60-k2-s2-LRelu conv_l2_k3
conv_l0_k2 conv-c30-k5-s1-LRelu Concat([conv_l0_k1, up_l1])
Output RGB conv_l0_k2
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Supplementary Note 6: Joint Optimization Method

Our endpoint loss function is designed for perceptual image quality. To that end, we leverage a
combination of objectives. The loss function is given by

L = λ1L1 + λpercLperc + λgradLgrad, (12)

where L1 is the Mean Absolute Error function, Lperc is a VGG-19 based perceptual loss function19,
Lgrad is a spatial gradient loss, and {λ1, λperc, λgrad} are loss weighting coefficients.

Recent advances in deep learning have demonstrated that computing differences on extracted
feature maps20 acts as a robust measure for image similarity with respect to human visual judgment,
in contrast to traditional metrics such as mean squared error (MSE) and Structural Similarity21. As
such, we leverage these insights in our loss function through our perceptual loss component Lperc

which uses a pre-trained VGG-19 network to extract and compare features from the output RGB
image Iout and the ground truth RGB image Igt:

Lperc(Iout, Igt) =
∑
b=2,3

L1 (Φb,2(Iout),Φb,2(Igt)) , (13)

where Φb,2 is the extracted feature map at layer blockb_conv2 of the VGG-19 network.

While the perceptual loss significantly improves overall image quality reconstructions, we
did notice that fine details were still missing from the final output. We attribute this to computing
losses on extracted feature maps with coarser resolution, as these lower resolution feature maps no
longer are sensitive to fine differences at the original higher resolution. To remedy this, we also
leverage a spatial gradient loss Lgrad. To compute the gradient loss we first define the following
four kernels:

k1 =
[
1 −1

]
, k2 =

[
1
−1

]
, k3 =

[
−1 0
0 1

]
, k4 =

[
0 1
−1 0

]
. (14)

We then compute Lgrad as

Lgrad =
∑

n=1,2,3,4

L1(Iout ∗ kn, Igt ∗ kn), (15)

where ∗ is the convolution operator. In addition to the descriptions provided in this document, we
refer the reader to the public code repository.

We optimize the entire end-to-end pipeline in TensorFlow 2, and the entire optimization
procedure took 18 hours on a single Nvidia P100 GPU. During training, we employ an alternating
optimization scheme where we alternate between optimizing the meta-optic’s phase coefficients
and optimizing the neural deconvolution. Specifically, we employ the Adam optimizer22 and we
alternate between optimizing the meta-optic phase for nMETA = 10 iterations with learning rate 50×

19



Supplementary Figure 6: Progression of training loss function and perceptual metrics
during optimization.

10−4 and optimizing the neural deconvolution for nDECONV = 100 iterations with learning rate 1 ×
10−4. Secondly, as the meta-optic phase coefficients are unbounded we restrict the parameter range
for all phase coefficients to be within [−1000, 1000] and during optimization we normalize the
range to be within [−1, 1]. The metasurface phase parameters are initialized at zero and the neural
network parameters for our deconvolution network are randomly initialized and are unbounded.
The SNR parameter for our inverse filtering block is expressed as 10α and α is bounded within
[3, 5], we initialize α = 4. See Supplementary Algorithm 1 and the public code repository for the
full algorithm. The final optimized phase coefficients that we obtained are given in Supplementary
Table 9. For training we use images from the INRIA Holiday dataset23.

We emphasize that our deconvolution algorithm generalizes to unseen experimental captures
despite never having seen these images. All training and finetuning is performed solely in simu-
lation, and we only use the measured PSFs to account for any discrepancies between theoretical
prediction and empirical observation. The generalizability of the neural feature propagation al-
gorithm to experimental measurements is shown in the main manuscript and in Supplementary
Note 11. Specifically, the high-quality reconstructions of natural scenes such as the fruits in Fig. 2
of the main manuscript, the sea shore in the third row of Supplementary Fig. 20, the urban area
in the middle row of Supplementary Fig. 21, the newspaper in the middle row of Supplementary
Fig. 22, and the toys in the middle row of Supplementary Fig. 23, as well as of the USAF 1951 and
Siemens Star charts in Supplementary Figs. 17 and 18 are all achieved with our neural nano-optics
even though the reconstruction algorithm never saw the sensor measurement or the corresponding
ground truth during training.

We show metric quantities over the design optimization process in Supplementary Fig. 6. We
observe improving performance over the course of optimization, which validates that our optimiz-
ation procedure is indeed converging upon a desirable solution.
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Supplementary Table 9: Final optimized metasurface phase coefficients. These phase
coefficients were obtained with our end-to-end pipeline and were used to manufacture the
meta-optic.

Phase Coefficient a2 a4 a6 a8 a10 a12 a14 a16

Value −349.48642 −3.2419178 −1000 −1000 −1000 −1000 −1000 −1000

Supplementary Algorithm 1: Neural Nano-Optics Design Algorithm
{CMETA, CSENSOR} = Define_Fixed_Parameters()
{PMETA,PDECONV} = Initialize_Optimizable_Parameters()
L = λ1L1 + λpercLperc + λgradLgrad

for t = 1, . . . , n do // Alternating Optimization
I = RandomImage()
θ = Field_Angle
PSFconv = fMETA(θ + ε,PMETA, CMETA)
PSFdeconv = fMETA(θ,PMETA, CMETA)
O = fDECONV(fSENSOR(I ∗ PSFconv, CSENSOR,PMETA),PSFdeconv,PDECONV)
for j = 1, . . . , nMETA do

Update
(
PMETA, ∂L(O, I)

/
∂PMETA

)
Bound (PMETA)

for j = 1, . . . , nDECONV do
Update

(
PDECONV, ∂L(O, I)

/
∂PDECONV

)
Bound (PDECONV)
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Supplementary Note 7: Experimental Setup

PSF Calibration Setup To measure the PSF, we imaged a pinhole positioned at the object plane
that was backside illuminated by a fiber-coupled LED using the setup shown in Supplementary
Fig. 7. As the sensor contains a cover-glass that is challenging to remove, we employ an optical
relay system to mount the optic at a virtual distance of 500 µm in front of our sensor. Specific-
ally, the focal profile of the metasurface was relayed and magnified using a custom microscope
comprising a 10× Nikon objective and tube lens, projecting the image onto a Prosilica GT1930C
Visible RGB camera. To measure the PSF at different field angles the pinhole and light source
were mounted on an XY translation stage by using a pair of orthogonally oriented Thorlabs PT1
translation stages. The sensor pixel pitch of our camera is 5.86 µm and our reconstructed images
are 720 px × 720 px. The microscope was mounted on a Newport ILS series motorized linear
stage to facilitate longitudinal positioning of the microscope. We acquire the PSFs over a range of
exposure times (0.002 s and doubling up to and including 65.536 s) and then combine using HDR
stitching. Additionally, each frame is computed from the average of 3 individual captures to reduce
the noise present during PSF calibration and from this we subtract an average dark frame.

Imaging Setup The setup for image acquisition was identical to the PSF measurement setup
except that a 5.5” SmallHD OLED display was used in place of the pinhole and the camera expos-
ure time was adjusted to utilize the full dynamic range of the camera, see Supplementary Fig. 7.
Again, we use the microscope relay to avoid having to remove the sensor cover glass. We use a
display for scene capture to allow for a fair and reproducible scene capture process for comparing
all meta-optics prototypes. For automated data collection, the Allied Vision Vimba API controlled
the camera and we used an OpenCV-based Python script for loading images onto the OLED dis-
play. Unlike PSF acquisition, we only acquire a total of three images at 2 s, 4 s, 6 s, 8 s and we do
not acquire multiples of the same frame. Note that the long exposure times are due to the large
decrease in light intensity caused by our relay setup utilizing a 10× magnification. Deploying
the nano-optic without the magnifying objective and using a correspondingly sized sensor would
require much shorter exposure times. Our 10× magnification factor causes a ∼100× decrease in
light efficiency, and thus we expect to require ∼100× shorter exposure times without the relay
setup.
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PSF Acquisition SetupPSF Acquisition Setup

Image Capture SetupImage Capture Setup

Supplementary Figure 7: Experimental imaging setup. We capture PSFs by using a mov-
able pinhole and a laser source, with one laser for each of the RGB wavelengths. Once
captured, the measured PSFs are used in our deconvolution algorithm and replace the sim-
ulated PSFs. We use the same setup for acquiring images except that the pinhole and lasers
are replaced with a monitor that displays images.
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Supplementary Note 8: Validation of Neural Nano-Optic Design

Existing Meta-Optics Designs We compare against existing metasurface designs and we demon-
strate that our end-to-end optimized neural meta-optics design possesses significant advantages
that facilitate deconvolution for image reconstruction. Specifically, we compare against a cubic3,
log-asphere24, shifted axicon25, and hyperboloid meta-optic engineered for green wavelengths
(511 nm). These previously proposed meta-optics designs have been demonstrated before for full-
color imaging applications; however, we demonstrate that using our proposed meta-optic design
outperforms all of these existing approaches.

We now describe each of the existing metasurface designs. All meta-optics designs including
our proposed design use a phase mask radius of R = 250 µm, corresponding to a 500 µm aperture.
Furthermore, for all optics, except for the hyperboloid, we use a focal length of f0 = 1 mm and a
nominal wavelength of λ0 = 452 nm. This wavelength is selected as it is the center wavelength of
the smallest wavelength (blue light) source in our OLED display and the phase at this wavelength
exhibits a full 0 to 2π phase shift over the nanopost width range.

The phase relationship for the cubic meta-optic from Colburn et al.3 is given by

φ(x, y) =
2π

λ

(√
x2 + y2 + f 2 − f

)
+

α

R3
(x3 + y3), (16)

where x and y are the plane coordinates and α is a design parameter that determines the strength
of the cubic term. We set α = 86π, f = f0, and λ = λ0. This α is set to be consistent with the
prior work by Colburn et al.3 but adjusted so that the design was scaled to the larger aperture size
and focal length used in our current system. As the wavelength changes, a chromatic focal shift is
induced for a metasurface and the α parameter is set to extend the depth of focus in a manner to
compensate for the level of defocus across the desired operating bandwidth.

We compare against a log-asphere meta-optic from Chi et al.24 with phase relationship given
by

φ(r) =

∫ r

0

r′(
r′2 +

(
s1 + (s2 − s1)

(
r′

R

)n)2)1/2dr′, (17)

where r =
√
x2 + y2, s1 is the focal length of the central annular zone, s2 is the focal length of the

outermost annular zone, and n is a design parameter that affects the intensity distribution over the
optical axis. In our experiments we set n = 2, making the intensity distribution uniform across the
line of foci. We set s1 = 0.9f0 and s2 = 1.4f0 so that the longitudinal extension of the focal spot
results in light focusing onto the sensor plane across the full operating bandwidth. Specifically, s1
and s2 are set asymmetrically as our nominal design wavelength (452 nm) is not at the center of
our desired wavelength range.

The phase mask for the shifted axicon meta-optic from Wang et al.25 follows the same form
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as Eq. 17, except that we set n = 1 while keeping s1 = 0.9f0 and s2 = 1.4f0, which is the only
difference between this design and the log-asphere.

Lastly, we compare against a hyperboloid meta-optic with phase relationship given by

φ(x, y) =
2π

λ

(
f −

√
x2 + y2 + f 2

)
, (18)

where we set λ = 511 nm to be focused at the green wavelength. We set f = f0 · λ/λ0 to produce
a meta-optic that is focused for a wavelength that is different from the nominal wavelength.

Meta-Optics Design Assessment We validate the proposed design and reconstruction method
in simulation and experimentally. Characterizations of the meta-optics, including PSFs, MTFs,
optical axis intensity measurements, and efficiency plots, are shown in Supplementary Figs. 11,
12, 13, 14. Note that all meta-optics designs for the comparison experiments in this note use a
500 µm aperture. Colburn et al. 3 used a 200 µm for the cubic meta-optic in their work, and in this
Supplemental Document we report results for their a scaled 500 µm variant. To scale their design
to a 500 µm, f/2 aperture, we increased α such that it would equivalently compensate the number
of waves of defocus imparted by sweeping the wavelength across the operating bandwidth from
400 to 700 nm.

Comparing all evaluated designs, we observe that the learned end-to-end optimized meta-
optic design exhibits compact PSFs across the visible spectrum which allows for improved full-
color deconvolution. Furthermore, the spatial variation of the PSFs across field angles is less severe
than for the other meta-optic designs, which we owe to our spatial variation training scheme.

For synthetic evaluation, we compare the sensitivity of each optical design to spatial aber-
rations by using the same offset PSF field angle scheme that we employed for end-to-end design.
Specifically, we use the PSF at field angle θ for deconvolution and the PSF at field angle θ + 5◦

for image formation (forward pass). This scheme is applied to all meta-optics designs with the
exception of the cubic for which we use normal incidence for both image formation and decon-
volution. For fair comparison, we finetune our proposed neural deconvolution algorithm to each
optical design (keeping the design fixed) and we compute quantitative metrics on an unseen test
set, see Supplementary Table 10 for quantitative results and Supplementary Fig. 8 for qualitative
results. We observed that our end-to-end optimized design enables the highest perceptual image
quality and lowest reconstruction error.

For experimental evaluation, we manufacture each of the existing optical designs and per-
form imaging experiments. Qualitative reconstruction results for each meta-optic design using
neural feature propagation deconvolution are shown in Supplementary Fig. 9 and the correspond-
ing sensor measurements are shown in Supplementary Fig. 10. For the log-asphere, shifted axicon,
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and hyperboloid meta-optics we observe that the spatial and wavelength sensitivity of these designs
significantly reduces image quality. Although the cubic PSF exhibits spatial and wavelength in-
variance, the long PSF tails are challenging to deconvolve and leave post-deconvolution artifacts.
The reconstructions for the shifted axicon and log-asphere designs exhibit strong ringing artifacts
which can be especially noticed in the red channel, but also exist for the other color channels. The
reconstructions for the traditional hyperboloid meta-optic exhibit sharp focus only for the target
wavelength, with severe ringing for the other color channels. Our neural nano-optic is the only
design that allows for high-fidelity reconstruction without cross channel artifacts.

Turning to the optical axis intensity measurements in Supplementary Fig. 13, we obtain
further insights into the advantages of our learned nano-optic design. Our learned nano-optics
maintains consistent aberration behavior across all wavelengths and field angles. In contrast,
other designs such as the log-asphere, shifted-axicon, cubic, and hyperboloid undergo signific-
ant variation across wavelengths and the FOV. Furthermore, our design concentrates light for all
wavelengths near the focal distance at 1 mm whereas designs such as the hyperboloid are only
in focus for a single wavelength, even at normal incidence. These intensity measurements reveal
that the optimization procedure steers the meta-optic design towards consistent, small aberration
performance across wavelengths and the FOV.

The focusing efficiency plots in Supplementary Fig. 14 demonstrate additional insights.
Here, we define the focusing efficiency as the ratio of the enclosed power at the focal plane relative
to the incident power on the lens, where we sweep the enclosing radius across the size of the aper-
ture. We observed that our learned design exhibits a slightly reduced focusing efficiency, showing
that focusing efficiency is not a necessary constraint for the design of meta-optics for high-quality
imaging. Nevertheless, this constraint can be easily incorporated into our optimization procedure
and we show that this leads to higher focusing efficiency in Supplementary Fig. 14.
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Supplementary Table 10: Quantitative comparison between different meta-optics designs
in simulation. To evaluate the sensitivity to spatial aberrations we offset the field angle used
for forward image formation and the field angle used for deconvolution. For a fair compar-
ison, we apply our proposed neural feature propagation deconvolution for all designs, hence
we achieve low reconstruction error even with imperfect meta-optic designs. Our end-to-
end optimized meta-optics design allows for the lowest reconstruction error and highest
PSNR. While some alternative designs preserve slightly sharper structure, which results in
a higher SSIM, they forego color accuracy which acts as a detriment to the reconstruction
error.

Meta-Optics Design
Image Formation Deconvolution

MSE PSNR (dB) SSIMPSF Field Angle PSF Field Angle
θconv θdeconv

Neural Nano-Optics
5◦ 0◦ 0.00185 27.7 0.839

15◦ 10◦ 0.00273 26.1 0.793

Cubic 3 5◦ 0◦ 0.00352 24.9 0.728

15◦ 10◦ 0.00388 24.5 0.710

Log-Asphere 24 5◦ 0◦ 0.00217 27.3 0.811

15◦ 10◦ 0.00395 24.7 0.748

Shifted Axicon 25 5◦ 0◦ 0.00277 25.8 0.836

15◦ 10◦ 0.00363 24.7 0.805

Hyperboloid (511 nm)
5◦ 0◦ 0.00249 27.4 0.921

15◦ 10◦ 0.00315 26.0 0.871
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Supplementary Figure 8: Qualitative comparison for different meta-optics designs in sim-
ulation. For a fair comparison, we apply our proposed neural feature propagation deconvo-
lution for all designs, hence we achieve high reconstruction qualities even with non-optimal
meta-optic designs. Our optimized meta-optic produces the lowest image reconstruction er-
ror, as evidenced by fine image details and accurate color recovery. The aberrations from
the cubic leave behind post-deconvolution artifacts. The log-asphere and shifted axicon
meta-optics suffer from aberrations at higher field angles. While the hyperboloid has strong
focus for the green channel which preserves spatial structure, it loses a significant amount
of color information which negatively impacts downstream deconvolution.
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Supplementary Figure 9: Qualitative comparison for different meta-optics designs using
experimental captures. The aberrations of the baseline meta-optics designs are too severe to
allow for high-quality full-color imaging, although our proposed neural feature propagation
does manage to recover some detail with these designs. The end-to-end optimized design
is the only design that successfully facilitates downstream deconvolution.
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Supplementary Figure 10: Sensor measurements for the reconstructions in Supplementary
Fig. 9.
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Supplementary Figure 11: Meta-optic PSFs. In this figure we show the simulated PSFs
for each design. Our optimization produces a meta-optic whose spatial PSFs are compact
across all wavelengths and are slowly varying across field angles. Other designs exhibit
PSFs with greater blur, especially for the red wavelength, and with rapid variation across
field angles. The PSF corresponding to the cubic design contains large tails that cause the
overall size of the PSF to be much larger than that of all other designs. As such, we only
display the center crop of cubic design PSFs from Colburn et al.3
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Supplementary Figure 12: Meta-optic MTFs. In this figure we show the simulated MTFs
for each design at field angles 0◦, 5◦, 10◦, 15◦, 20◦.
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Supplementary Figure 13: Meta-optic Intensity Profiles. In this figure we show intensity
profiles in the y-z and x-z planes for normal incidence and at 20◦. The optical intensity
for 462 nm, 511 nm, 606 nm are shown from top to bottom for each plot. Our end-to-end
optimized meta-optic exhibits stable performance across all wavelengths and field angles
while avoiding severe aberrations incurred by the cubic design from Colburn et al.3

33



!"#$%

&'()*#+,+$-./011.234

5)"*6,.562+78(9$%:

;<$=9)-.>?$%+2 @+A7>:(<)*)

5)"*6,.562+78(9$%:
B$9<.C+%":$2A.!+2:9*6$29

Supplementary Figure 14: Meta-optic Simulated Diffraction Efficiencies. In this figure
we show diffraction efficiencies for the meta-optics within the visible regime. The effi-
ciency here is defined as the ratio of power enclosed within a circle of a specified radius
(x-axis in the plot) at the focal plane to the power incident on the meta-optic. We observe
that the learned design actually exhibits slightly reduced focusing efficiency, demonstrating
that focusing efficiency is not a necessary merit for high-quality imaging. Nevertheless, we
can boost the efficiency by incorporating additional constraints in our optimization routine
to maximize the enclosed power within the PSF. This is shown in the plot titled “Neural
Nano-Optics with Focusing Constraint.”
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Supplementary Note 9: Validation of Neural Feature Propagation

Existing Deconvolution Algorithms We compare our deconvolution method against existing
deconvolution algorithms, including traditional deconvolution methods and learning based ap-
proaches. As traditional deconvolution methods, we compare against Wiener filtering26, Richardson-
Lucy27, and Alternating Direction Method of Multipliers (ADMM) optimization with an L1 total
variation prior14. For the learning based approaches, we compare against the non-blind deconvo-
lution approach from Son et al.28 and the blind deconvolution approach from Kupyn et al.16. Our
neural feature propagation achieves a fast runtime of 58 ms per 720× 720 RGB image that allows
for real-time applications.

Deconvolution Algorithm Assessment We perform synthetic experiments to evaluate the effic-
acy of the deconvolution algorithms. For evaluation, we utilize our proposed learned meta-optic
in addition to the aforementioned cubic and log-asphere designs. We finetune the deconvolution
algorithms to each of these designs and we evaluate using the same offset PSF scheme as described
earlier in the meta-optics evaluation. Quantitative results are shown in Supplementary Table 11 and
qualitative results are shown in Supplementary Figs. 15 and 16. Our neural feature propagation de-
convolution achieves the highest quantitative metrics across all evaluation settings, validating its
effectiveness. This method even performs well for meta-optic designs that were not obtained with
our end-to-end optimization scheme, as can be seen when we apply it to the cubic and log-asphere
designs, which demonstrates the generalizability of our algorithm.

The finetuning procedure for each deconvolution method is performed as follows. For Son et
al.28 and Kupyn et al.16, we train their deconvolution networks on the synthetically blurred sensor
images using the same hyperparameter settings as described in their work. For ADMM decon-
volution we manually tune the hyperparameters to achieve the best results. We set the gradient
sparsity prior’s coefficient to be 4× 10−6, the initial consensus term to be 1× 10−6, the ratio para-
meter for updating the consensus term to be 2.7, and the maximum number of iterations at 10. For
Richardson-Lucy we set the maximum number of iterations at 10. For Wiener filtering, we set the
SNR value at 1× 104.

We observed that traditional deconvolution algorithms are not robust to diverse aberrations
commonly encountered in meta-optics imaging. On the other hand, the blind deep-learning method
of Kupyn et al.16 falls into a local minima where it does not do any deblurring at all. The method
of Son et al.28 performs better as it combines traditional deconvolution algorithms with deep learn-
ing approaches. However, they do not employ a feature extractor and only apply deep learning
layers after an initial Wiener filtering step. As such, they are unable to extract and utilize salient
information embedded within the sensor measurement as well as our neural feature propagation
method.
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Supplementary Table 11: Quantitative comparison between different deconvolution al-
gorithms in simulation. We apply the deconvolution algorithms to different meta-optic
designs and with varying PSF field angles. Our neural feature propagation algorithm
achieves the highest reconstruction quality across all metrics and meta-optic designs, even
for designs that were not obtained with our end-to-end optimization pipeline. This is valid-
ated by how we outperform all other deconvolution methods by 4 dB PSNR and with 2.5×
lower MSE on the log-asphere deconvolution task (bottom row).

Meta-Optics Design
Image Formation Deconvolution

MSE PSNR (dB) SSIMPSF Field Angle PSF Field Angle Algorithm
θconv θdeconv

Neural Nano-Optics 5◦ 0◦

Neural Feature Propagation 0.00185 27.7 0.839

Son et al.28 0.00345 24.8 0.792

Kupyn et al.16 0.01398 19.0 0.575

ADMM with L1-TV14 0.00329 25.9 0.709

Richardson-Lucy27 0.00550 23.5 0.643

Wiener filtering26 0.00669 21.8 0.336

Neural Nano-Optics 15◦ 10◦

Neural Feature Propagation 0.00273 26.1 0.793

Son et al.28 0.00510 23.2 0.723

Kupyn et al.16 0.01498 18.7 0.565

ADMM with L1-TV14 0.00465 24.3 0.661

Richardson-Lucy27 0.00629 22.8 0.630

Wiener filtering26 0.01414 18.8 0.243

Cubic3 0◦ 0◦

Neural Feature Propagation 0.00334 25.1 0.740

Son et al.28 0.00618 22.3 0.661

Kupyn et al.16 0.02693 16.0 0.517

ADMM with L1-TV14 0.00478 23.9 0.659

Richardson-Lucy27 0.01252 19.5 0.557

Wiener filtering26 0.01653 17.8 0.188

Log-Asphere24 5◦ 0◦

Neural Feature Propagation 0.00217 27.3 0.811

Son et al.28 0.00435 24.1 0.707

Kupyn et al.16 0.01332 19.4 0.556

ADMM with L1-TV14 0.00605 22.9 0.628

Richardson-Lucy27 0.00858 21.5 0.583

Wiener filtering26 0.02634 15.8 0.128

Log-Asphere24 15◦ 10◦

Neural Feature Propagation 0.00395 24.7 0.748

Son et al.28 0.01132 20.1 0.529

Kupyn et al.16 0.01612 18.5 0.535

ADMM with L1-TV14 0.02001 17.4 0.484

Richardson-Lucy27 0.01248 19.7 0.545

Wiener filtering26 0.04202 13.9 0.066
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Supplementary Figure 15: Qualitative comparison between deconvolution algorithms in
simulation. Wiener filtering exacerbates sensor noise. Richardson-Lucy and ADMM both
fail to recover sharp fine details. Kupyn et al.16 falls into a local minima where it avoids
doing any deblurring. Son et al.28 do not employ a multi-scale feature extractor and con-
sequently they do not reach the same level of performance as our method. Neural feature
propagation recovers high frequency content and reproduces accurate color while mitigat-
ing sensor noise.
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Supplementary Figure 16: Qualitative comparison between deconvolution algorithms in
simulation. Wiener filtering exacerbates sensor noise. Richardson-Lucy and ADMM both
fail to recover sharp fine details. Kupyn et al.16 falls into a local minima where it avoids
doing any deblurring. Son et al.28 do not employ a multi-scale feature extractor and con-
sequently they do not reach the same level of performance as our method. Neural feature
propagation recovers high frequency content and reproduces accurate color while mitigat-
ing sensor noise.
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Supplementary Note 10: Spatial Resolution Evaluation

We evaluate the spatial resolution of our meta-optic imager using a Siemens Star chart and a USAF
1951 chart, results are shown in Supplementary Figs. 17 and 18. As was done for the imaging
experiments, our display to optic distance is 120 mm. Our neural nano-optic imager is able to
resolve line pairs up to Group 0, Element 6 of the USAF 1951 chart for all color channels, thus
providing us with a spatial resolution of 213.6 lp/mm. While the hyperboloid meta-optic allows for
high spatial resolution in the green wavelength, the other channels are aberrated such that none of
the line pairs in the USAF 1951 chart can be read. Similarly for Colburn et al.3, severe chromatic
aberrations prevent resolution of line pairs in the USAF 1951 chart, thus limiting the resolution to
Group -2, Element 1 which corresponds to 30 lp/mm.
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Supplementary Figure 17: Qualitative results for reconstructions of the USAF 1951 chart.
The reconstruction with our neural nano-optic imager accurately is able to resolve line pairs
up to Group 0, Element 6 across all color channels whereas the other meta-optic imagers
suffer from aberrations outside of the nominal wavelength range.
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Supplementary Figure 18: Qualitative results for reconstructions of the Siemens Star chart
with corresponding MTF plots. The reconstruction with our neural nano-optic imager ac-
curately matches the MTF of the ground truth Siemens Star whereas the MTFs of the other
methods lose significant spatial resolution.
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Supplementary Note 11: Additional Experimental Results

Our image reconstructions using neural nano-optics achieves 22.1 dB PSNR and 0.807 SSIM on
full-color reconstructions with respect with to a ground truth acquired with a high-quality com-
pound optic. Quantitative metrics and comparisons are shown in Supplementary Table 12. We
achieve 10× lower reconstruction error, measured by pixel-wise mean squared error (MSE), and
improve by over 10 dB PSNR on the red channel reconstruction, which is an order of magnitude
improvement over meta-optics that are designed for a specific wavelength (usually the green chan-
nel). This improvement holds even over Colburn et al.3 which was designed to maintain consistent
performance across the visible spectrum. We also evaluate using recent learned perceptual metrics,
specifically the Learned Perceptual Image Patch Similarity (LPIPS) metric20. These metrics com-
pute differences between extracted features of images as opposed to differences between the image
intensities themselves. We again demonstrate lower reconstruction error with this metric. Addi-
tional qualitative experimental reconstruction results are shown in Supplementary Figs. 19, 20,
21, 22, 23, and corresponding sensor measurements are shown in Supplementary Figs. 24 and 25.
We showcase comparisons against images acquired using a hyperboloid meta-optic designed for
511 nm with Wiener filtering, Colburn et al.3 with Wiener filtering, the neural nano-optic using the
proposed feature propagation deconvolution, and a highly corrected six-element compound optical
stack (Edmund Optics 50mm C Series #59-873). We additionally show comparisons against a con-
ventional refractive lens (Thorlabs LA1540) and demonstrate that our nano-optic imager achieves
comparable performance despite being 10000× smaller. Lastly, we also show comparisons against
a 500 µm aperture version of the cubic meta-optic from Colburn et al.3 Although the larger aperture
does improve image quality, the artifacts induced by the cubic design are still present.

We observe substantial image quality improvement across a diverse range of scenes. In the
first row of Supplementary Fig. 19, we observe faithful reconstruction of a colored buckets and the
third row shows a clear reconstruction of the hotel, including cloud details in the sky. The middle
row of Supplementary Fig. 20 shows clear reconstruction of a highly detailed toy which the other
meta-optic methods struggle to recover. Detailed urban scenes are recovered in the middle row
of Supplementary Fig. 21 and the first row of Supplementary Fig. 22. We see that recovered text
details are legible in the first row of Supplementary Fig. 21 and the middle row of Supplementary
Fig. 22.
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Supplementary Table 12: Quantitative evaluation of experimental captures and recon-
structions. Evaluation metrics are computed with respect to the image acquired with the
compound optic. Note that lower is better for MSE and LPIPS. Wiener filtering with manu-
ally optimized SNR parameters is applied to Colburn et al.3 and to the traditional meta-optic
for 511 nm. We also compare against a conventional refractive lens and we achieve similar
quantitative performance which further validates the imaging capability of our neural nano-
optics. The compound optic, conventional refractive lens, and Colburn et al.3 are resized to
the resolution of the 500 µm aperture metasurface reconstructions.

Red (606 nm) Green (511 nm) Blue (462 nm) Full-Color

Method MSE PSNR MSE PSNR MSE PSNR MSE PSNR SSIM LPIPS20

Neural Nano-Optics 0.00479 23.9 0.00621 23.5 0.00978 20.5 0.00693 22.1 0.807 0.2082

Colburn et al.3
with Wiener filtering

0.04987 13.2 0.03352 15.1 0.04943 13.5 0.04427 13.7 0.625 0.3450

Traditional Meta-Optic
with Wiener filtering 0.04944 13.8 0.01430 19.3 0.03233 16.2 0.03203 15.8 0.676 0.2805

Traditional Meta-Optic 0.05308 13.7 0.02773 16.4 0.02910 16.5 0.03664 15.2 0.688 0.2635

Conventional
Refractive Lens 0.00426 24.2 0.00494 24.0 0.00952 21.7 0.00624 23.1 0.800 0.1945
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Supplementary Figure 19: Additional experimental reconstruction results. These results
supplement the reconstruction results from Fig. 2 of the main manuscript.
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Supplementary Figure 20: Additional experimental reconstruction results. These results
supplement the reconstruction results from Fig. 2 of the main manuscript.
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Supplementary Figure 21: Additional experimental reconstruction results. These results
supplement the reconstruction results from Fig. 2 of the main manuscript.
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Supplementary Figure 22: Additional experimental reconstruction results. These results
supplement the reconstruction results from Fig. 2 of the main manuscript.
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Supplementary Figure 23: Additional experimental reconstruction results. These results
supplement the reconstruction results from Fig. 2 of the main manuscript.
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Supplementary Figure 24: Experimental measurements for our neural nano-optics corres-
ponding to the reconstructions shown in Supplementary Figs. 19, 20, 21, 22, 23.
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Supplementary Figure 25: Experimental measurements for the traditional meta-optic
designed for 511 nm corresponding to the reconstructions shown in Supplementary
Figs. 19, 20, 21, 22, 23.
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