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Abstract

Today’s state-of-the-art methods for 3D object detec-
tion are based on lidar, stereo, or monocular cameras.
Lidar-based methods achieve the best accuracy, but have
a large footprint, high cost, and mechanically-limited an-
gular sampling rates, resulting in low spatial resolution at
long ranges. Recent approaches using low-cost monocu-
lar or stereo cameras promise to overcome these limita-
tions but struggle in low-light or low-contrast regions as
they rely on passive CMOS sensors. We propose a novel 3D
object detection modality that exploits temporal illumina-
tion cues from a low-cost monocular gated imager. We in-
troduce a novel deep detection architecture, Gated3D, that
is tailored to temporal illumination cues in gated images.
This modality allows us to exploit mature 2D object feature
extractors that guide the 3D predictions through a frustum
segment estimation. We assess the proposed method ex-
perimentally on a 3D detection dataset that includes gated
images captured over 10,000 km of driving data. We val-
idate that our method outperforms state-of-the-art monoc-
ular and stereo methods, opening up a new sensor modal-
ity as an avenue to replace lidar in autonomous driving.
https://light.princeton.edu/gated3d

1. Introduction
3D object detection is a fundamental vision task in

robotics and autonomous driving. Accurate 3D detections
are critical for safe trajectory planning, with applications
emerging across disciplines such as autonomous drones, as-
sistive and health robotics, as well as warehouse and de-
livery robots. RGB-D cameras using correlation time-of-
flight [22, 29, 34], such as Microsoft’s Kinect One, enable
robust 3D detection indoors [55, 56] for small ranges. In the
past, autonomous driving, which requires long ranges and
high depth accuracy, has relied on scanning lidar for 3D de-
tection [50, 60, 15, 64, 35, 11, 68, 30, 33]. However, while
lidar provides accurate depth, existing systems are funda-
mentally limited by point-by-point acquisition, resulting in

*indicates equal contribution.

spatial resolution that falls off quadratically with distance
and linearly with frame rate. In contrast to conventional
cameras, lidar systems are three orders of magnitude more
expensive, suffer from low resolution at long distances, and
fail in the presence of strong back-scatter, e.g. in snow or
fog [3].

Promising to overcome these challenges, a recent line
of work proposed pseudo-lidar sensing [61], which relies
on low-cost sensors, such as stereo [10, 7, 27] or monoc-
ular [9, 20, 14] to recover dense depth maps from conven-
tional intensity imagers. Point-clouds are sampled from the
depth maps and ingested by 3D detection methods that op-
erate on point-cloud representations [33, 68]. More recent
methods predict 3D boxes directly from the passive input
images [36, 4, 54]. Although all of these methods promise
low-cost 3D detection with the potential to replace lidar,
they rely on passive camera-only sensing. Passive stereo
approaches degrade at long ranges, where disparities are
small, and in low-light scenarios, e.g. at night, when stereo
or monocular depth cues are less visible.

In this work, we introduce the first 3D object detection
method using gated imaging and evaluate this as a low-
cost detection method, outperforming recent monocular and
stereo detection methods. Similar to passive approaches,
we use CMOS sensors but add active temporal illumina-
tion. The proposed gated imager captures illumination dis-
tributed in three wide gates (> 30 m) for all sensor pixels.
Gated imaging [25, 5, 2, 63, 49, 1, 21] allows us to capture
several dense high-resolution images distributed continu-
ously across the distances in their respective temporal bin.
Additionally, back-scatter can be removed by the distribu-
tion of early gates. Whereas scanning lidar trades off tem-
poral resolution with spatial resolution and signal-to-noise
ratio (SNR), the sequential acquisition of gated cameras
trades off dense spatial resolution and SNR (i.e. wide gates)
with coarse temporal resolution. We demonstrate that the
temporal illumination variations in gated images are a depth
cue naturally suited for 3D object detection. Operating on
2D gated slices allows us to leverage existing 2D object de-
tection architectures to guide the 3D object detection task
with a novel frustum segmentation. The proposed archi-
tecture further exploits gated images by disentangling the
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Figure 1: We propose a novel 3D object detection method, “Gated3D”, which uses a flood-illuminated gated camera. The
high resolution of gated images enables semantic understanding at long ranges. In the figure, our gated slices are color-coded
with red for slice 1, green for slice 2 and blue for slice 3. We evaluate Gated3D on real data collected with a Velodyne
HDL64-S3D scanning lidar as reference, as seen in the overlay on the right.

semantic contextual features from depth cues in the gates
through a two stream feature extraction. Relying on the re-
sulting high-resolution 2D feature stacks, the method out-
performs existing methods especially at long ranges. Al-
though the proposed architecture is trained using only gated
images as input, it naturally supports fusion with other ex-
isting depth modalities, e.g. from RGB stereo or lidar depth
maps. The method runs at real-time frame rates and outper-
forms existing passive imaging methods, independent of the
ambient illumination – promising low-cost CMOS sensors
for 3D object detection in diverse automotive scenarios.

Specifically, we make the following contributions:

• We formulate the 3D object detection problem as a re-
gression from a frustum segment, computed using 2D
detection priors and the object dimension statistics.

• We propose a novel end-to-end deep neural network
architecture that solves this regression with depth cues
and semantic features from gated images.

• We validate the proposed method on real-world driv-
ing data acquired in challenging automotive scenarios.
The proposed approach detects objects with high ac-
curacy up to 80 m, outperforming existing monocular,
stereo and pseudo-lidar low-cost methods.

• We provide 3D annotations for gated data captured in
northern Europe, along with code and models.

As an example, Figure 1 shows experimental results of
the proposed method. The gated image contains dense in-
formation on objects further away in the scene. The advan-
tage of gated sensors for nighttime scenes is also demon-
strated in this example, where the pedestrians are not clearly
visible in the RGB image.

2. Related Work
Depth Sensing and Estimation. Passive acquisition meth-
ods for recovering depth from conventional intensity images
operate on single monocular images [8, 20, 32, 14, 48, 4],

temporal sequences of monocular images [28, 58, 59, 67],
or on multi-view stereo images [23, 51, 7, 44, 36]. These
methods all suffer in low-light and low-contrast scenes. Ac-
tive depth sensing overcomes these limitations by actively
illuminating the scene, and scanning lidar [50] has emerged
as an essential depth sensor for autonomous driving, inde-
pendent of ambient lighting. However, the spatial resolution
of lidar is fundamentally limited by the sequential point-by-
point scanning frame rate and the sensor cost is significantly
higher. Recently, gated cameras were proposed as an alter-
native for dense depth estimation [21]. Although promising
depth estimates have been demonstrated with gated cam-
eras, local artefacts and low-confidence regions in outputs
from Gruber et al. [21] call into question if its performance
for high-quality scene understanding tasks could surpass
that of recent monocular and stereo-based methods – a gap
addressed in this work in an end-to-end fashion by directly
processing the gated input slices.

CNN 2D Object Detection. Convolutional neural networks
(CNNs) for efficient 2D object detection have outperformed
classical methods that rely on hand-crafted features by a
large margin [47]. The key concept behind such learned ob-
ject detectors is the classification of image patches at vary-
ing positions and scales [52]. Discretized grid cells and pre-
defined object templates (anchor boxes) are regressed and
classified by fully-convolutional network architectures [40].
To this end, two popular directions of research have been
explored: single-stage [39, 46, 26, 38] and proposal-based
two-stage detectors [19, 18, 47]. Two-stage approaches
such as R-CNN [19] and Faster R-CNN [47] generate re-
gion proposals for objects in the first stage followed by ob-
ject classification and bounding box refinement in the sec-
ond stage [19]. Single-stage detectors such as SSD [39] and
YOLO [46] directly predict the final detections and are usu-
ally faster than two-stage detectors but with lower accuracy.
Recently, RetinaNet [38] proposed a focal loss that effec-
tively down-weights easily-classified background examples
and showed that single-stage detectors trained with this loss
can match two-stage detectors in terms of accuracy.



3D Object Detection. A large body of work on 3D ob-
ject detection has explored different scene and measurement
representations. For lidar point cloud data, one direction is
to rely on voxel-based representations [60, 15, 68, 12, 53].
Unfortunately, the computational cost of the 3D convo-
lutions required for voxel-based approaches is prohibitive
for real-time processing [60, 15]. Alternatively, the height
dimension of the voxel grid can be collapsed into fea-
ture channels with 2D convolutions performed in the BEV
plane [64, 33, 41], trading off height information for com-
putational efficiency.

Although existing state-of-the-art methods rely on lidar,
recent work aims to close the performance gap with low-
cost passive sensors due to the limitations of scanning li-
dar, such as cost, size, low angular resolution and failure in
back-scatter.

Earlier work on monocular [9, 54, 4, 6, 31] and stereo
[36] methods leveraged convolutional architectures from
2D object detection, extracting depth information from
stereo disparity, geometric constraints, or object dimen-
sions [6, 31] in an end-to-end fashion. We integrate these
concepts into a frustum segment-based approach that im-
proves depth prediction.

More recently, pseudo-lidar [61] showed that point cloud
input representations can be used with passive imaging ap-
proaches by first estimating depth maps. Several methods
have since followed this approach with monocular [62, 43]
and stereo [65] depth estimation. PatchNet [42] proposed
that the advantage of pseudo-lidar is its explicit depth in-
formation in its input rather than the point cloud representa-
tion. Instead, PatchNet uses a 2D convolutional architecture
with the estimated (x,y,z) coordinates of each pixel as its
input. Estimating the depth prior to the detection network
effectively disentangles depth information from object ap-
pearance, improving the detection accuracy.

In this work, we propose a method for 3D detection using
2D gated images, offering a low-cost solution comparable
to passive sensors with improved detection accuracy. This
input representation allows us to leverage the rich body of
efficient 2D convolutional architectures for the task of 3D
object detection, while the gated slices represent depth more
effectively than RGB images.

3. Gated Imaging
Gated imaging is an emerging sensor technology for self-

driving cars which relies on active flash illumination to al-
low for low-light imaging (e.g. night driving) while reduc-
ing back-scatter in adverse weather situations such as snow
or fog [21].

As shown in Figure 2, a gated imaging system consists
of a flood-illuminator and synchronized gated image sen-
sor that integrates photons falling in a window of round-trip
path-length ξc, where ξ is a delay in the gated sensor and
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Figure 2: A gated system consists of a pulsed laser
source and a gated imager that are time-synchronized. The
range-intensity profile (RIP) Ci(r) describes the distance-
dependent illumination for a slice i. A car at a certain dis-
tance appears with a different intensity in each slice accord-
ing to the RIP.

c is the speed of light. Following [21], the range-intensity
profile (RIP) C(r) describes the distance-dependent inte-
gration, which is independent of the scene and given by

C (r) =

∞∫
−∞

g (t− ξ) p
(
t− 2r

c

)
β (r) dt, (1)

where g is the temporally modulated camera gate, p the
laser pulse profile and β models atmospheric interactions.
Assuming now a scene with dominating lambertian reflec-
tor with albedo α at distance r̃, the measurement for each
pixel location is obtained by

z = αC(r̃) + ηp (αC(r̃)) + ηg, (2)

where ηp describes the Poissonian photon shot noise and ηg
the Gaussian read-out noise [16]. In this work, we capture
three images Zi ∈ Nheight×width for i ∈ {1, 2, 3} with differ-
ent profiles Ci(r) that encode depth into these three slices.

4. 3D Object Detection from Gated Images
Next, we introduce Gated3D, a novel model for detect-

ing 3D objects from temporal illumination cues in gated im-
ages. Given three gated images, Gated3D determines the
3D object location, dimensions, orientation and class.

Architecture Overview The proposed architecture is il-
lustrated in Figure 3. Our model is composed of a 2D de-
tection network, based on Mask R-CNN [24], and a 3D de-
tection network designed to effectively integrate semantic,
contextual, and depth information from gated images. Our
model is trained end-to-end using only 3D bounding box
annotations with no additional depth supervision. However,
we also investigate the use of depth maps as a training sig-
nal. Although we focus on depth maps from gated-based
modality, depth maps can also be generated from RGB or
stereo images. Through this experimentation, we then show
how our model can potentially be integrated with modalities
that can add features orthogonal to gated cues.



The 2D detector predicts bounding boxes that guide the
feature extraction with a FPN [37] backbone. These 2D
boxes are used to estimate frustum segments that constrain
the 3D location. In addition to these geometric estimates,
the 3D detection network receives the cropped and resized
regions of interest extracted from both the input gated slices
and the backbone features. To extract contextual, seman-
tic and depth information from the temporal intensity varia-
tions of the gated images, our 3D detection network applies
two separate convolution streams: one for the backbone fea-
tures and another for the gated input slices. The resulting
features are fed into a sequence of fully-connected layers
that predict 3D object location, dimensions, and orientation.

The remainder of this section details our proposed 2D
object detection network 4.1, 3D prediction network archi-
tecture 4.2 and the loss functions for training 4.3.

4.1. 2D Object Detection Network
The proposed 2D detection network uses a FPN [37] as

a backbone and RoIAlign for extracting crops of both the
features and input gated slices. We extract features maps
P2, P3, P4 and P5 of the backbone, as defined in [37].

Our 2D object detection network follows a two-stage ar-
chitecture, where the final 2D box detections are refined
from proposals output by a region proposal network (RPN).
In contrast to Mask RCNN [24], we use these 2D detec-
tions instead of the RPN proposals for 3D detection. Using
the refined 2D detections allows the 3D box prediction net-
work to obtain more precise region features, especially from
the input gated slices, and a more precise frustum segment,
which is essential for depth estimation.

4.2. 3D Object Detection Network
Our 3D prediction network fuses the extracted features

from both the input gated slices and the backbone features.
The gated stream extracts depth cues from the cropped
gated input slices with a sequence of convolutions per slice,
without parameter sharing. These convolutions consist of
three layers with 3 × 3 × 16, 3 × 3 × 32 and 3 × 3 × 32
kernels. The network fuses the three gated features and the
backbone features by concatenating along the channel di-
mension and processing with 5 residual layers. Instead of
pooling or flattening the resulting features, an attention sub-
network produces softmax attention maps for each feature
channel which are used for a weighted sum over the height
and width of the features. The resulting feature vectors are
fed into two fully connected layers, followed by a final layer
that generates eight 3D bounding box coefficients.

We denote an object’s predicted 2D bounding box as
P = (c, u, v, wu, hv), where c is object’s class, (u, v) is
the bounding box center, and (wu, hv) define its height and
width, respectively. The 3D detection network takes P and
estimates a set of parameters Q, that define a 3D bounding
box whose projection is given by P . The problem of esti-

mating Q is ill-posed as given a specific 2D bounding box
P , there are an infinite number of 3D boxes that can be pro-
jected to P . However, we can restrict the range of locations
ofQ to a segment of the 3D viewing frustum extracted from
P , using the object’s approximate dimensions and P . See
Figure 4 for an illustration.

Estimating the 3D location is aided by a frustum region
similar to [45]. For lidar data, a frustum suffices to define
an object in 3D space as lidar provides depth values. In our
case, we only have data in the image space, without abso-
lute depth value. Instead of considering the whole frustum
as in [45], we leverage the camera calibration and object di-
mensions in the training set to guide depth estimation. This
idea is illustrated in Figure 4, where a person is located at
different distances relative to the camera. Using the object
height and 2D bounding box projection, we can estimate
the distance to the camera through triangulation. Assuming
a bounded height, we can accurately estimate the segment
of the frustum where the object is located. In the example
in Figure 4 we define the minimum and maximum height
values to be 1.5m and 2m.

For each 2D bounding box P = (c, u, v, wu, hv) gen-
erated by the 2D detection network, our 3D bounding
box network is trained to estimate the parameters Q′ =
(δu′, δv′, δz′, δh′, δw′, δl′, θ′), which encode the location
(x, y, z), dimensions (h,w, l), and orientation (θ′) of a 3D
bounding box as follows
3D Location. We estimate the objects location (x, y, z)
using its projection over the image space, as well as a frus-
tum segment. Specifically, we define the target δu′, δv′ val-
ues as

δu′ = (Proj2du(x, y, z)− u)/wu (3)
δv′ = (Proj2dv(x, y, z)− v)/hv, (4)

where Proj2du(x, y, z), P roj2dv(x, y, z) represent the
u, v coordinates of the 2D projection of (x, y, z) over the
image space.

To define the target z, we first define a frustum segment
used as a reference for depth estimation. Given an object
with height h, we can estimate the object distance to the
camera with focal length fv as

f(hv, h) =
h

hv
fv. (5)

If we assume that h follows a Gaussian Distribution
with mean µh and standard deviation σh, given P =
(c, u, v, wu, hv) and fv , we can constrain the distance
from the object to the camera to a range of [f(hv, µh −
σh), f(hv, µh+σh)], or, more generally, we deduct that the
frustum segment has a length d

d = f(hv, µh + k ∗ σh)− f(hv, µh − k ∗ σh), (6)

where k is a scalar that adjusts the segment extent and is
inversely proportional to our prediction confidence.



Figure 3: From three gated slices, the proposed Gated3D architecture detects objects and predicts their 3D location, dimen-
sion and orientation. Our network employs a 2D detection network to detect ROIs. The resulting 2D boxes are used to crop
regions from both the backbone network and input gated slices. Our 3D network estimates the 3D object parameters using a
frustum segment computed from the 2D boxes and 3D statistics of the training data. The network processes the gated slices
separately, then fuses the resulting features with the backbone features and estimates the 3D bounding box parameters. P,Q
denote ground-truth boxes, and P ′, Q′ denote predicted boxes.
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Figure 4: There is an infinite number of 3D cuboids that can
project to a given bounding box P . However, the object lo-
cation can be reasonably estimated using the object height,
its projected height, and the vertical focal length.

Following these observations, the z coordinate of the 3D
bounding box, δz′, is given as

δz′ =
z − f(hv, h)

d
. (7)

Thus, the model is trained to predict an offset δz′ between
the actual depth z and the approximate depth f(hv, h). Nor-
malization with depth d is key to estimate the absolute depth
of the objects. Intuitively, for higher distances z there is
greater localization uncertainty in the labels and as such, the
training loss needs to account for this proportionally. Note,
that this does not require the object to be inside the frustum
segment to be detected, but rather uses the frustum segment
length to scale the offset. There are no additional constraints
for different orientations or positions because the model can
learn these offset adjustments from data.

Analogous to 2D detectors, the frustum segment can be
considered as an anchor, except its position and dimen-

sions are not fixed, instead using the camera model and ob-
ject statistics to adjust accordingly. Note that other vehicle
types, such as buses, can be separate classes, as is conven-
tionally done in 2D object detection. We illustrate this point
and show generalization to different orientations and posi-
tions in the Supplemental Material.

During training, we use h from ground-truth; during in-
ference, we use the network prediction.
3D Box Dimensions and Orientation. The target 3D box
dimensions are estimated using δh′, δw′, δl′, which are de-
fined as the offset between the mean of the objects dimen-
sions, per class, and the true dimensions.

δp′ =
p− µp
µp

,∀p ∈ {h,w, l}. (8)

To learn the target orientation (observation angle) θ′, the
orientation is encoded as (sinθ′ , cosθ′), and the network is
trained to estimate each parameter separately.

Additional Depth Map Inputs. We also investigate the
use of dense depth estimation as an additional training sig-
nal. Depth maps are estimated using the network proposed
in [21] and are integrated into the Gated3D architecture
in the second stage after RoIAlign cropping. Following
the same architecture as the gated crop feature extractor,
the depth map crop features are then concatenated with the
gated and backbone features.

4.3. Loss Functions

Given a 3D box parameters ground-truth box Q =
(δu, δv, δz, δh, δw, δl, sinθ, cosθ), and its corresponding
prediction Q′ = (δu′, δv′, δz′, δh′, δw′, δl′, θ′), we define
our overall loss L3D(Q,Q

′) as



L3D(Q,Q
′) = α ·

∑
l∈{u,v,z}

Lloc(δl − δl′) +
∑

d∈{h,w,l}

Ldim(δd− δd′)

+ β · Lori(sinθ, cosθ, θ′),
(9)

where Lloc is the location loss, Ldim is the dimensions
loss, and Lori(θ, θ′) is the orientation loss. We use α and
β to weight the location and orientation loss, and define
these values during training. We define Lloc and Ldim as
SmoothL1, and Lori(sinθ, cosθ, θ′) as

Lori(sinθ, cosθ, θ
′) = (sinθ − sin(θ′))2+(cosθ − cos(θ′))2.

(10)
The method runs at approximately 10 FPS on an Nvidia
RTX 2080 GPU in TensorFlow without implementation op-
timization such as TensorRT. We refer to the Supplemental
Material for additional method and implementation details.

5. Datasets
In this section, we describe the 3D object detection

dataset we use to train and evaluate Gated3D.
Sensor Setup. Since existing automotive datasets [57, 13,
17, 66] do not include measurements from gated cameras,
we use the dataset from Bijelic et al. [3] who collected gated
images, along with RGB, lidar and FIR data during a large-
scale data acquisition in Northern Europe. We combine
this dataset with additional validation and test data acquired
with a test vehicle with the same gated system BrightEye
from BrightwayVision:

• A gated CMOS pixel array of resolution 1280 px ×
720 px with a pixel pitch of 10 µm. Using a focal
length of 23 mm provides a horizontal and vertical field
of view of 31.1◦ H× 17.8◦ V.

• Two repetitive pulsed vertical-cavity surface-emitting
laser (VCSEL) which act as a pulsed illumination
source at a wavelength of 808nm, not visible to hu-
mans. The peak power is within eye safety regulations.
The source is mounted below the bumper of the vehi-
cle, see Figure 5.

The gated images consist of three exposure profiles as
shown in Figure 2, see gate settings (delay, laser duration,
gate duration) in the Supplemental Document. For each sin-
gle capture, multiple laser flashes are integrated before read-
out in order to increase the measurement signal-to-noise.

For comparison with state-of-the-art 3D detection ap-
proaches, following Bijelic et al.[3], we equip the test ve-
hicle with a Velodyne HDL64 lidar scanner and a stereo
camera. The stereo system consists of two cameras with
OnSemi AR0230 sensors mounted at 20.3 cm baseline. All
sensor specifications are listed in Figure 5.

3D Annotation and Dataset Split In addition to the data
from Bijelic et al. [3], which contains 13k gated images,
we capture an additional 2.5k gated images. We use the

Stereo Camera Velodyne HDL64-S3

Laser Source

Gated Camera

Gated Camera Stereo Camera Lidar

Sensor BrightwayVision
BrightEye

2x OnSemi
AR0230

Velodyne
HDL64-S3D

Resolution 1280px×720px 1920px×1080px 1440”×612”

Wavelength 808 nm Color 905 nm

Frame Rate 120 Hz 30 Hz 10 Hz

Bit Depth 10 bit uint 12 bit uint 32 bit float

Figure 5: Sensor setup for recording the dataset used for
training and evaluating the proposed method. We also
capture corresponding lidar point clouds and stereo image
pairs. The stereo camera is located at approximately the
same position of the gated camera in order to ensure a sim-
ilar viewpoint.

collected raw data and additional vehicle data with a sim-
ilar system described above, and annotate 3D boxes using
the time-synced lidar measurements. The annotation and
capture procedures for the dataset are detailed in the Sup-
plement Document. The gated images have been manually
labeled with human annotators matching lidar, gated and
RGB frames simultaneously. In total, more than 100,000
objects are labeled, which comprise 4 classes. The anno-
tations were done over 15k image examples in total. To
minimize annotation issues with temporal shift between the
gated images and RGB images, we refine the RGB boxes
projected into the gated frames for frames that are tempo-
rally offset.

The dataset is randomly split into a training set of 10k
frames, a validation set of 1,000 frames and a test set of
4,441 frames. In addition to the gated images, our pro-
posed dataset contains corresponding RGB stereo images
captured by the stereo camera system described in the pre-
vious paragraph. We note that, in contrast to popular au-
tomotive datasets, including Waymo [57], KITTI [17] and
Cityscapes [13], our dataset is significantly more challeng-
ing as it also includes many nighttime images and captures
under adverse weather conditions such as snow and fog.

6. Assessment
Evaluation Setting. The BEV and 2D/3D detection met-
rics as defined in the KITTI evaluation framework are used
for evaluation, as well as the ones described by [64], which



Table 1: Object detection performance over the experimental dataset (test split). Our method outperforms monocular and
stereo methods (bottom part of the table) over most of the short (0-30m), middle (30-50m) and long (50-80m) distance ranges,
as well as Pseudo-Lidar based methods trained over gated images. Interestingly, our model even outperforms PointPillars
lidar reference for Pedestrian detection at long distance ranges.

(a) Average Precision on Car class.

Method Modality
Daytime Images Nighttime Images

2D object detection 3D object detection BEV detection 2D object detection 3D object detection BEV detection
0-30 m 30-50 m 50-80 m 0-30 m 30-50 m 50-80 m 0-30 m 30-50 m 50-80 m 0-30 m 30-50 m 50-80 m 0-30 m 30-50 m 50-80 m 0-30 m 30-50 m 50-80 m

POINTPILLARS [33] Lidar 90.12 82.83 56.63 91.51 84.63 54.28 91.59 86.54 54.71 90.73 84.88 54.22 90.29 87.40 52.32 90.29 87.51 52.60

M3D-RPN [4] RGB 90.44 89.29 62.76 53.21 13.26 10.52 60.80 16.16 10.52 90.85 80.64 59.76 51.18 20.76 2.73 52.53 21.39 2.74
STEREO-RCNN [36] Stereo 81.56 81.07 78.08 54.17 17.16 6.17 57.92 17.69 6.26 81.73 81.03 70.85 47.36 17.21 13.02 53.81 18.34 13.08
PSEUDO-LIDAR Gated 81.74 81.33 80.88 26.17 16.06 10.27 26.94 17.26 10.87 89.35 89.02 88.31 36.58 23.05 19.88 39.50 28.68 22.82
PSEUDO-LIDAR++ [65] Gated 81.74 80.29 81.59 30.44 15.47 11.76 32.49 16.97 12.83 90.21 81.75 81.78 36.36 21.93 22.39 37.46 23.12 23.63
PATCHNET [42] Gated 90.46 81.74 89.78 23.91 10.86 7.34 24.87 11.33 7.84 90.87 89.86 88.89 23.74 16.79 7.16 25.15 17.76 8.29

Gated3D Gated 90.91 90.88 90.85 58.55 27.50 17.59 59.05 32.37 18.74 90.91 81.82 90.85 57.18 29.97 17.93 57.99 30.36 18.49
Gated3D w/ dense depth Gated 90.91 81.82 90.88 56.69 24.77 15.66 57.79 24.86 15.74 90.63 81.82 90.65 54.74 26.43 14.1 56.31 30.35 15.44

(b) Average Precision on Pedestrian class.

Method Modality
Daytime Images Nighttime Images

2D object detection 3D object detection BEV detection 2D object detection 3D object detection BEV detection
0-30 m 30-50 m 50-80 m 0-30 m 30-50 m 50-80 m 0-30 m 30-50 m 50-80 m 0-30 m 30-50 m 50-80 m 0-30 m 30-50 m 50-80 m 0-30 m 30-50 m 50-80 m

POINTPILLARS [33] Lidar 70.08 49.03 0.00 69.71 45.24 0.00 70.53 48.07 0.00 69.97 43.32 0.00 71.25 41.21 0.00 70.99 43.61 0.00

M3D-RPN [4] RGB 79.08 66.41 36.98 26.20 14.50 9.84 30.68 17.47 10.07 78.36 62.99 36.76 25.09 6.43 2.07 26.42 7.69 2.74
STEREO-RCNN [36] Stereo 88.57 75.63 59.82 48.58 23.26 7.77 50.11 25.10 8.38 80.38 69.13 60.94 46.09 21.63 11.57 47.58 25.47 11.84
PSEUDO-LIDAR Gated 77.87 78.38 69.11 6.19 4.59 2.15 10.28 9.14 4.13 80.34 78.61 67.78 7.53 9.58 1.62 14.27 15.72 5.55
PSEUDO-LIDAR++ [65] Gated 77.89 77.95 60.88 9.19 2.36 3.30 14.32 5.66 4.10 79.84 79.57 54.42 7.37 7.21 2.06 12.92 11.99 5.64
PATCHNET [42] Gated 90.48 80.75 69.56 32.88 18.05 5.62 39.45 20.27 9.77 81.50 88.62 65.43 15.37 13.37 6.75 21.60 18.15 8.46

Gated3D Gated 89.72 81.47 86.73 50.94 20.59 14.14 53.26 22.15 16.51 81.52 81.23 80.18 48.53 23.99 14.98 49.82 25.57 15.46
Gated3D w/ dense depth Gated 90.32 81.42 79.87 48.35 25.77 12.28 55.41 26.73 13.66 81.77 81.26 79.97 48.72 17.35 13.16 50.28 22.63 14.09

calculate the metrics with respect to distance ranges. Fol-
lowing Simonelli et al. [54], average precision (AP) is based
on 40 recall positions to provide a fair comparison. We con-
sider Pedestrian and Car as our target detection classes.

The 3D metrics are based on intersection over union
(IoU) between cuboids [11], which has the disadvantage of
equally penalizing completely wrong detections and detec-
tions with IoU below the threshold. Due to the emphasis
on challenging scenarios in the dataset, as well as imperfect
sensor synchronization, the dataset has notably more label
noise than typical public 3D object datasets. This problem
is mitigated by using lower IoU thresholds than in KITTI:
0.2 for Car and 0.1 for Pedestrian. To focus on detection
at different depth ranges, metrics based on difficulty as de-
fined in KITTI are provided in the Supplemental Document.
Baselines. We compare our approach to monocular,
stereo, lidar, and pseudo-lidar methods. As monocular
baseline, we evaluate M3D-RPN [4], which performs 3D
object detection from a single RGB image by “depth-aware”
convolution, where weights in one branch of the network
are shared across rows only, assuming objects higher up in
the image tend to be further away. As stereo method, we
evaluate STEREO-RCNN [36], which utilizes stereo image
pairs to predict left-right 2D bounding boxes and keypoints
that are then used to infer 3D bounding boxes using geo-
metric constraints. Recent pseudo-lidar methods allow us
to compare our method with recent state-of-the-art meth-
ods using the depth map as input, and therefore more di-
rectly assess the effectiveness of our model architecture in
extracting information from gated images. To this end, we
use the method from Gruber et. al. [21] to first generate
dense depth maps from gated images, back-project all the

pixels of the depth maps into 3D coordinates, and follow
[61] to perform 3D object detection using Frustum Point-
Net [45]. We also evaluate Pseudo-Lidar ++ [65] depth cor-
rection method from sparse lidar, downsampled from our 64
layered lidar to four lidar rays. Furthermore, we evaluate
PatchNet [42], which implements a pseudo-lidar approach
based on 2D image-based representation. As a lidar refer-
ence method for reference with known (measured) depth,
we evaluate POINTPILLARS [33].

We use the corresponding open source repositories and
tune the hyperparameters of each baseline model during
training over our dataset.
Experimental Validation. As described in Section 4, we
also experiment with the use of depth maps as a training
signal to our Gated3D model. In this experiment, we train
the Gated2Depth model in our dataset, extract and feed
the estimated depth maps from these trained models to our
Gated3D network. The Gated3D network then crops the re-
gions of interest from the depth maps, and fuses the features
with the gated and backbone features through an attention
mechanism, as illustrated in Figure 3.

Tables 1a and 1b, respectively, show Car and Pedestrian
AP for 2D, 3D and BEV detection on the test set. Overall,
our Gated3D model by itself obtains more robust perfor-
mance over the different category and daytime evaluation
settings, and using depth maps as an additional training sig-
nal slightly improves accuracy at near distances. Consistent
with prior work [36] both the monocular and stereo base-
lines show a drop in performance with distance. Monocular
and stereo cues for a small automotive baseline of 10 - 30cm
are challenging to find with increasing range.

The proposed GATED3D method offers a new im-
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Figure 6: Qualitative comparisons on the test dataset. Bounding boxes from the proposed method are tighter and more
accurate than the baseline methods. This is seen in the second image with the other methods showing large errors in pedestrian
bounding box heights. The BEV lidar overlays show our method offers more accurate depth and orientation than the baselines.
For example, the car in the intersection of the fourth image has a 90 degree orientation error in the pseudo-lidar and stereo
baselines, and is missed in the monocular baseline. The advantages of our method are most noticeable for pedestrians, as
cars are easier for other methods due to being large and specular (please zoom in on the electronic version for details).

age modality between monocular, stereo and lidar mea-
surements. The results demonstrate improvement over
intensity-only methods, especially for pedestrians and at
night. GATED3D excels at detecting objects at long dis-
tances or in low-visibility situations. Note that pseudo-lidar
and stereo methods can be readily combined with the pro-
posed method — a gated stereo pair may capture stereo
cues orthogonal to the gated cues exploited by the proposed
method. For additional ablation studies on the components
of Gated3D, please refer to the Supplemental Document.

Figure 6 shows qualitative examples of our proposed
method and state-of-the-art methods. The color-coded
gated images illustrate the semantic and space information
of the gated data (red tones for closer objects and blue for
farther away ones). Our method accurately detects objects
at both close and large distances, whereas other methods
struggle, particularly in the safety-critical application of de-
tecting pedestrians at night or in adverse weather.

7. Conclusions and Future Work
This work presented the first 3D object detection method

for gated images. As a low-cost alternative to lidar,
Gated3D outperforms recent stereo and monocular detec-
tion methods, including state-of-the-art pseudo-lidar ap-
proaches. We expand on CMOS sensor arrays used in pas-
sive imaging approaches by flood-illuminating the scene
and capture the temporal intensity variation in coarse tem-

poral gates. Gated images allow us to leverage existing 2D
feature-extraction architectures. We distribute the result-
ing features in the camera frustum along the correspond-
ing gate – a representation that naturally encodes geometric
constraints between the gates. The proposed method runs at
real-time rates and we validate the method experimentally,
demonstrating higher 3D object detection accuracy than ex-
isting monocular or stereo detection methods, including re-
cent stereo and monocular pseudo-lidar methods with simi-
lar cost to the proposed system.

We envision our work as a first step towards gated imag-
ing as a new sensing modality, beyond lidar, radar and cam-
era, for a broad range of tasks in robotics and autonomous
driving, including tracking, motion planning, SLAM, visual
odometry, and large-scale scene understanding.
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