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In this Supplemental Document we present additional information and results in support of the main manuscript. Section
1 describes results using the KITTI evaluation metrics and shows additional qualitative examples of our method as well
as several baseline methods. Section 2 presents a detailed ablation study of our proposed architecture. Section 3 provides
additional insight and experiments on the generalization to different objects, orientations and positions. Section 4 provides
implementation details. Section 5 describes our gated imaging sensor setup. Section 6 provides further details on our
Gated3D dataset annotation and capture procedures. Please see the additional Supplemental Video for qualitative results of
the proposed approach in challenging conditions.

1. KITTI Evaluation Metrics and Qualitative Comparisons

Table 1 gives additional results of our method and the baselines described in our main manuscript, using the KITTI eval-
uation metrics. Overall the proposed approach mostly outperforms the baselines in the Easy, Moderate and Hard categories,
and narrowly trails the leading result in the few cases where another method has the best result. In particular, Gated3D
consistently outperforms the baselines in the Hard category. This validates that our model is able to robustly detect small and
occluded objects, and is consistent with the results in our main manuscript, which show larger improvements for pedestrians
at all distance ranges as well as for cars in the furthest range considered of 50-80m.

Figure 1 shows additional qualitative results of our method compared to the baseline approaches. We can see that our
proposed method detects objects with more accurate localization in both the image and birds eye view spaces. Our method
especially outperforms other methods on pedestrians and objects that are far away from the camera.

2. Ablation Study

Table 2 shows the impact of some of the main components of our proposed Gated3D model. The results of our complete
architecture are compared against variants of the model without the attention layers, with a smaller backbone (ResNet-50
FPN), and without the frustum-based depth prediction (regression of absolute depth). Since the attention layers serve as a
learned pooling between the convolutional and fully-connected layers, we test replacing attention with max-pooling, mean-
pooling and flattening. Note that for the version with flattening in place of the attention layer, the RolAlign crop size is
reduced from 28 to 7 due to memory constraints.

Due to the relatively small size of the test set and label noise caused by sensor synchronization issues, it is best to consider
the overall performance across a full row of Table 2 or both daytime and nighttime results for each class rather than attempt
a fine-grained analysis.

While attention layers improve the results overall for both object classes, the impact is larger for pedestrian detection.
This matches the intuition that attention helps separate object features from background or occlusion features in the ROI
crops. Pedestrian crops have proportionally more background or occlusion on average, both because they are smaller and
less rectangular than cars, and because the 2D detection performance is lower, leading to more poorly-fit region proposals to
the 3D detection network. Additionally, as expected, we see that attention does not consistently impact the 2D metrics as it
is only used in the 3D detection network.

*indicates equal contribution.
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Figure 1: Qualitative comparison against baseline methods on the captured dataset. Bounding boxes from the proposed
method are tighter and more accurate than the state-of-the-art methods. The BEV lidar overlays show that our method offers
more accurate depth and orientation than the baselines. The advantages of our method are most noticeable for pedestrians,
as cars are easier to detect for other methods due to being large and specular (please zoom in on the electronic version for

details). 5




Table 1: Object detection performance over Gated3D dataset (test split). Similar to the results using distance range-based
metrics, our method outperforms monocular and stereo methods, as well as pseudo-lidar based methods, over the three KITTI
categories (Easy, Moderate and Hard).

(a) Average Precision on Car class.

Daytime Images Nighttime Images

Method Modality | 2D object detection 3D object detection BEYV detection 2D object detection 3D object detection BEYV detection

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard | Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard
POINTPILLARS [5] Lidar | 8574 7791 76.74 8545 7620 7273 86.19 76.68 73.77|86.41 79.42 80.30 86.43 77.87 76.84 86.66 78.01 77.05
M3D-RPN [2] RGB |89.39 80.29 7133 32.13 31.21 2699 3328 3246 27.59|89.58 8042 7145 30.70 30.65 2640 30.99 31.02 26.76
STEREO-RCNN [6] Stereo [ 90.13  88.67 79.88 31.54 26.68 23.10 3250 2821 24.15|90.24 88.79 80.13 28.05 27.20 23.04 32.04 2852 24.05
PSEUDO-LIDAR Gated |90.56 90.43 8998 1859 1794 1559 1930 1873 16.41]90.74 90.63 9023 27.09 2692 2634 33.18 28.63 2836
PSEUDO-LIDAR++ [Y] Gated |90.55 90.43  89.97 1859 1822 1597 1976  19.88  20.07 |90.74 90.60  90.19 2631 26.89 26.82 29.96 2790 2834
PATCHNET [¢] Gated |90.87 90.79  90.39 13.41 13.77 1397 16.18 1430 14.55]90.87 90.87 90.47 1791 1529 1551 19.18 1874 16.58
GATED3D Gated 9091  90.90 90.64 36.15 32.04 2893 38.03 3533 30.52|90.88 90.75 90.53 3558 29.15 28.58 36.34 29.87 29.17
GATED3D W/ DENSE DEPTH | Gated |90.91  90.88  81.79 3497 28.8 27.69 354 29.12 28.1 |90.86 90.75 81.67 35.24 2872 27.57 3598 2940 284l

(b) Average Precision on Pedestrian class.
Daytime Images Nighttime Images

Method Modality | 2D object detection 3D object detection BEYV detection 2D object detection 3D object detection BEYV detection

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard | Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard
POINTPILLARS [5] ‘ Lidar ‘ 4870 4748  48.01 4555 43.12 4275 47.16 44.85 44.60 ‘ 4429 4219 4174 4199 3829 37.49 42.89 39.77 3877
M3D-RPN [2] RGB |75.14 67.83 67.01 17.16 1670 1470 18.78 18.19 1829 |73.04 6622 6557 12.02 1143 11.21 1517 13.05 12.59
STEREO-RCNN [6] Stereo | 85.90 84.17 7775 30.92 2837 2543 31.88 30.78 28.95|85.06 77.65 7690 28.54 25.00 24.55 29.76 2872 2552
PSEUDO-LIDAR Gated |88.62 8831 87.87 491 3.90 391 945 9.68 9.85 |89.19 8791 87.53 6.68 6.62 6.71 1250  12.60  12.66
PSEUDO-LIDAR++ [Y] Gated |88.49 88.18 8793 4.44 4.64 4.60 9.35 9.55 9.61 | 8890 8798 87.63 591 4.66 476 1148 1223 1230
PATCHNET [§] Gated |89.78 89.30 88.58 21.43 2094 20.62 2674 2581 22.75|89.86 88.80 8791 13.26 1254 12.66 17.94 1522 1536
GATED3D Gated |90.20 89.79 89.51 28.60 2785 27.34 3400 29.61 29.39|89.60 89.35 81.04 29.95 2845 2833 31.12 2986 29.32
GATED3D W/ DENSE DEPTH | Gated |90.17  81.31  81.17 31.12 30.6 30.6 36.52 31.74 31.50 |90.09 81.34 8125 27.53 2685 2274 2891 2841 2846

Replacing the backbone of the 2D detection network with a ResNet-50 FPN leads to a relatively larger performance drop
than replacing the attention layers. This may be due to a lack of hyperparameter tuning on this variation of the architecture,
as this ablation represents a more substantial change to the network than the attention replacements. It may be possible to
achieve results closer to the full architecture by adjusting the loss weights and learning rate schedule.

The last row of Table 2 shows results of the proposed architecture with RGB images as input. Results show that our
model obtains competitive results with RGB images only but perform better with gated images, especially at night and in the
detection of pedestrians.

Overall, the proposed frustum segment-based depth prediction has the largest impact on 3D and BEV detection metrics of
all the ablations considered. This is expected, as directly regressing the absolute depth of the object implies a larger range of
possible values and greater variance on the loss. This may be why the 2D detection metrics are also lower, as larger depth
loss values may interfere with training the other losses. Additionally, regressing the depth directly means that any dataset
imbalances have a larger impact on training and the network may learn to hedge its prediction towards the mean depth. This
is less of an issue with the frustum segment-based depth prediction since the predicted offset is in a smaller range and is more
likely to be symmetric. We did attempt to mitigate these issues by hyperparameter tuning with different loss weights and
more aggressive gradient clipping, but were unable to improve the results for this variant of the model. As such, we conclude
that the frustum segment-based depth prediction is a critical component of the proposed model.

3. Generalization Across Object Types, Dimensions and Orientations

Our approach to robust 3D object detection consists of introducing general priors based on the object statistics and camera
calibration, and letting the network learn additional information from data. This allows our method to generalize to different
object types, dimensions and orientations. In this subsection, we show how our model can be robustly extended to recognize
other objects than the ones covered in the main manuscript, as well as its generalization to different orientations and poses.

In order to extend the method to the detection of large vehicles such as trucks or vans, our approach only requires calcu-
lating the corresponding object dimension statistics and adding classification heads for the target objects, as is typically done
in 2D object detection. This approach does not require any additional annotation process, as the statistics can be computed
from 3D labels. To illustrate this approach we trained our Gated3D model on the KITTI dataset, using the Car, Pedestrian,
Truck, Van and Cyclist labels. In this experiment, we use the training-validation split as proposed by Chen et al. [3]. Figure 2
shows some output examples of this extension. Although our model has not been optimized to have RGB as input, results in



Table 2: Ablations of our proposed model.

(a) Average Precision on Car class.

Daytime Images Nighttime Images
Gated3D variant 2D object detection 3D object detection BEYV detection 2D object detection 3D object detection BEYV detection
0-30m 30-50m 50-80m 0-30m 30-50m 50-80m 0-30m 30-50m 50-80m | 0-30m 30-50m 50-80m 0-30m 30-50m 50-80m 0-30m 30-50m 50-80m

COMPLETE 90.78  90.55 9091 52.15 2831 14.85 5231 29.26 15.02 | 90.84  81.82 90.33 5142 25.73 1297 5337 2913 13.12
WITHOUT ATTENTION: MAX PooL | 90.75  81.77 90.85  39.77 19.95 9.22 4747 2175 12.17 | 90.87  81.82 81.74 4470  21.62 13.35 4739 22.59 15.86
WITHOUT ATTENTION: MEAN PoOL | 90.91  90.58 90.68  49.81 21.47 13.03  50.77 2201 14.09 | 9091 81.82 81.82 40.83 21.62 9.19 4734 2315 9.67
WITHOUT ATTENTION: FLATTEN 90.71  90.61  90.62  48.16  20.65 8.61 50.17 2192 8.92 90.80  81.82 81.67 48.10 2532 13.10 4959 28.30 14.50
‘WITH RESNET-50 FPN 89.04  81.68 89.44  43.65 15.23 7.28 44.87 18.10 745 88.30  81.62 81.30 2733 13.78 8.25 28.42 14.42 8.58
WITHOUT FRUSTUM SEGMENT 90.65 79.74  80.19 1843 1145 10.74 2258  13.08 12.16 | 90.60 7236  71.64 16.73 8.74 10.85 1797 9.9 11.19
WITH RGB INPUT 90.45  90.61 90.55 51.80 26.51 18.57 5344 2651 1891 | 90.81 90.83 81.39 51.50 20.06 9.08 5225 2261 10.82

(b) Average Precision on Pedestrian class.

Daytime Images Nighttime Images
Gated3D variant 2D object detection 3D object detection BEYV detection 2D object detection 3D object detection BEYV detection
0-30m 30-50m 50-80m 0-30m 30-50m 50-80m 0-30m 30-50m 50-80m | 0-30m 30-50m 50-80m 0-30m 30-50m 50-80m 0-30m 30-50m 50-80m

COMPLETE 89.72  81.47 86.73  50.94  20.59 14.14 5326 2215 16.51 81.52  81.23 80.18 4853  23.99 1498 49.82 2557 15.46
WITHOUT ATTENTION: MAX PooL | 90.31 81.25 79.26  34.77 15.10 9.85 4444 2151 10.77 | 81.73  81.35 79.64 3342 14.00 7.26 4198  23.62 13.95
WITHOUT ATTENTION: MEAN PoOL | 89.96  89.40 79.11 37.67 15.34 11.65 5375 2267 1582 | 81.56  81.32 80.55  28.80 16.97 9.75 47.64 2554 12.20
WITHOUT ATTENTION: FLATTEN 90.44  80.98 7892  36.69 18.09 6.38 4550 2334 11.65 | 81.69  81.34 80.77 3434 2038 13.61 3845  26.16 17.28
‘WITH RESNET-50 FPN 81.20 71.01 60.10  37.16 13.48 1024 39.64 14.45 10.57 | 80.11 78.38 7299 2378 12.26 493 27.26 15.59 722
WITHOUT FRUSTUM SEGMENT 89.57 81.08 7514 2155 1533 10.77 4829 16.14 13.07 | 80.89 81.05  69.01 2332 17.80 6.19 38.04  18.62 8.01
WiTH RGB INPUT 90.47 88.42 80.03  41.97 10.34 5.68 43.21 12.78 579 89.64 8141 75.54  29.70 13.88 3.29 31.47 15.33 4.10

Figure 2 show that our method can be effectively extended to recognize other kinds of objects and furthermore, can poten-
tially be used for monocular 3D object detection from RGB images. Although we note that the number of samples in the Van
and Truck KITTI categories is not large enough to compute definite metrics, this preliminary extension shows encouraging
results regarding the generalization capability of our proposed model.

Our frustum-based depth estimation can be considered as a generalized anchor-based approach for object depth estimation.
The method uses object dimension statistics and the camera calibration to estimate an approximated depth, and trains a
network to compute the offset between this estimation and the actual depth. In order to effectively train the network, this
offset is scaled by a frustum region (as defined in Equation (7) in the main manuscript) that encodes the uncertainty at
near and long distances. We note that this approach does not require the objects to be inside the frustum segment in order
to be recognized. The model also does not require the projected 2D height to correspond exactly to the object height for
the anchors. Similar to anchors in 2D object detection networks, where no anchor matches exactly the target 2D objects
dimensions, our network learns the offset adjustments between the depth anchor and the target object depth from data. To
illustrate the robustness of our model to different object orientations and poses, please see the supplemental video.

4. Additional Network Details

As described in our main manuscript, the proposed Gated3D network is composed of a 2D object detection network that
generates 2D detection candidates, and a 3D object detection network that predicts 3D object parameters for each candidate
generated in the first step. The 2D object detection network uses a ResNet-101 FPN backbone and is initialized from a Faster
RCNN checkpoint pretrained on COCO [7]. RolAlign is used to extract features from both the 2D backbone features and
gated input images, with a pooling resolution of 28 x 28.

Table 3 shows the architecture of our 3D object detection network.

We train our network for up to 50, 000 steps with a batch size of 2 with 64 candidate detections per image and use the
3D average precision on the validation set to control early stopping. The entire network is trained on full-resolution images
using stochastic gradient descent with a learning rate of 0.0016 and momentum of 0.9. Gradient clipping is used to limit
the norm of the gradients to 1.0. We define the loss weights for the depth, orientation, and dimensions as 2.0, 0.1 and 0.02,
respectively.

During training we randomly sample data augmentation operations from the following set, each with an independent 75%
chance of being applied: saturation +0.15, brightness £0.15, contrast +0.15, and additive Gaussian noise of mean 0 and
standard deviation 0.001. The additive Gaussian noise is randomly sized between 1/4 and 1/40 the image size and then
resampled with bilinear interpolation to match the input image size. This is done to perturb the inputs over a range of spatial
frequencies, since the saturation, brightness and contrast augmentations are all low-frequency perturbations.

Additionally, we augment the RoIAlign crops with a probability of 50% independently for each of the backbone feature
and gated image crops. The augmentation randomly downsamples the crops to a size between 22 x 22 and 27 x 27 (inclusive)
and then upsamples back to 28 x 28. This simulates the blurring inherent in the features and inputs of far-away objects and



Figure 2: Generalization Experiment: Although our model has not been optimized for RGB data, it generalizes to KITTI
RGB data, see text. We present qualitative results of our Gated3D model applied to RGB from KITTTI validation (top four
rows) and test (bottom four rows) sets. 3D boxes are color-coded as green=Car, yellow=Van, purple=Truck, red=Pedestrian,
white=Cyclist. BEV shows an area in the [0m, 100m] and [-40, +40m] ranges in the Z and X camera coordinates, respectively.
Our model effectively recognizes objects of varying dimensions and types, i.e. Cars, Vans, and Trucks.



Table 3: 3D object detection network architecture. In the table, “conv-k(a)-s(b)-ReLU” represents a convolution layer with
an a X a kernel window, using stride b, followed by a ReLU activation function. Similarly, “res-d(d)-k(a)-s(b)-BN-ReLU”
indicates repeating residual layers of depth d with batch normalization prior to the ReLU activation. “RolAlign-size(a)-
scale(b)-r(c)” represents an RolAlign layer with a x a pooling resolution, using a spatial scale of 2-% and a sampling ratio
of c. The RolAlign layers use the output of the 2D object detector to crop regions.

3D Object Detection Network

Layer Name Type Channels
slice0_input Oth Gated Slice 1
sliceO_Rol RolAlign-size28-scale0-r2 1
slice0_conv0 conv-k3-s1-ReLLU 16
sliceO_conv1 conv-k3-s1-ReLU 32
sliceO_conv2 conv-k3-s1-ReLU 32
slicel _input 1st Gated Slice 1
slicel _Rol RolAlign-size28-scale0-r2 1
slicel_conv0 conv-k3-s1-RelLU 16
slicel _convl conv-k3-s1-ReLLU 32
slicel _conv2 conv-k3-s1-ReLLU 32
slice2_input 2nd Gated Slice 1
slice2_Rol RolAlign-size28-scale0-r2 1
slice2_conv( conv-k3-s1-ReLU 16
slice2_convl conv-k3-s1-ReLU 32
slice2_conv2 conv-k3-s1-ReLLU 32
Py P layer of ResNet-101 FPN backbone 256
P> Rol RolAlign-size28-scale2-r2 256
P3 Ps layer of ResNet-101 FPN backbone 256
P5; Rol RolAlign-size28-scale8-r2 256
Py P, layer of ResNet-101 FPN backbone 256
P, Rol RolAlign-size28-scale16-12 256
Ps Ps layer of ResNet-101 FPN backbone 256
P5 Rol RolAlign-size28-scale32-12 256
concat Concat(slice* _conv2, P,_Rol) 352
fusion res-d5-k3-s1-BN-ReLU 352
attention_conv0 conv-k3-s1-ReLLU 352
attention_conv 1 conv-k3-s1-ReLLU 352
attention_conv?2 conv-k3-s1-RelLU 352
attention_conv3 conv-k3-s1-ReLU 352
attention_softmax  Softmax 352
z_fcl Linear 1024
z_fc2 Linear 1024
box3d_pred Linear 8

we found it to improve the 3D detection results for objects in the 50-80m range.

During inference we set the IoU threshold for non-maximum suppression to 0.7 and use the top 300 proposals for detection.
From these, the detections with object confidence greater than or equal to 0.5 are selected. The frustum extent factor k is set
to 1.



Laser Camera

Laser power Paser 500W Pixel pitch p 10 um
Wavelength A 808 nm Aperture Foum 1.2
Horizontal field of illumination 6g 24° Optical transmission Topties  0.64
Vertical field of illumination Ov 8° Focal length f 23 mm
Horizontal field of view 0 31.1°
Vertical field of view Oy 17.8°
Resolution 1280 px x 720 px

Table 4: Laser and camera specifications of the BrightwayVision BrightEye.

5. Gated Image Formation

In this section, we explain in more detail the gated image formation model that is based on the range-intensity-profile
C(r) given by

C(r) = 79(t—£)p<t—2£>ﬁ(r)dt- m

Both the temporally-modulated camera gate g and the laser pulse profile p are assumed to be rectangle-shaped with a duration
given in Table 5. Eq. (1), £ describes the delay between the start of illumination and the start of exposure, and (3 (r) models
atmospheric effects occurring not at object surfaces given by

_ -PlaserToplics P2 i
4mr2 tan (%) tan (%) Fam ke

B(r) e 2" 2)

where g, is the laser power, Topics is the optical transmission, 6 and 6y are the horizontal/vertical field of illumination,
p is the pixel pitch, Fy,n, is the aperture, A is the wavelength, & is the Planck constant and +y is the atmospheric attenuation
coefficient. Assuming now a scene with a dominating lambertian reflector with albedo « at distance 7, the measurement for
each pixel location is obtained by

z = aC(r) 4+ np (aC(T)) + ng, (3)

where 7, describes the Poissonian photon shot noise and 7, the Gaussian read-out noise [4]. In order to improve the SNR,
multiple pulses are required before read-out as described in Table 5. We use a larger number of pulses to improve SNR at
larger distances. Details on the laser and camera specifications can be found in Table 4.

For this work, we use the range-intensity-profiles defined by the gating parameters in Table 5 and as illustrated in Figure 3.
The range-intensity-profiles have been manually designed with the objective of three overlapping slices covering a distance
range of approximately 150 m. While the first slice covers the close range up to 60-70 m, the second slice starts at 20 m and
reaches 120 m. The third slice covers the far range from 60-180 m. Note that slices at larger distances require more illumi-
nation pulses in order to compensate irradiance and atmospheric attenuation. The gated image provides a fully-illuminated
scene and is obtained by integrating all three slices.

In the future, we believe that there is substantial potential in optimizing the exposure profiles for specific tasks. However,
this work focuses on algorithms based on gated images and we show that the intrinsic depth encoding of gated imaging can
be exploited for 3D object detection.

6. Gated3D Dataset
6.1. Capture

Within this work we utilize the dataset from Bijelic et al. [1] and refine the labels in the gated domain. The dataset
includes gated images which cover a range of scenes, weather conditions, and ambient illuminations. In total, a test vehicle
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Figure 3: Range-intensity profiles C;(r) defined by the gating parameters given in Table 5.

Laser duration ~ Gate duration Delay & Pulses

Slice 1 240 ns 220 ns 260 ns 202
Slice 2 280ns 420 ns 400 ns 591
Slice 3 370ns 420 ns 750 ns 770

Table 5: Gating parameters that we use in this work.

was driven for more than 10,000 km in Northern Europe, covering diverse scenes from Germany, Sweden, Finland and
Denmark. In Germany, different sized cities, i.e. Biberach a. d. Rif}, Blaubeuren, Ehingen, Hamburg, Immenstadt, Kempten
(Allgiu), Kiel, Lindau, Memmingen, Miinsingen, Oberstaufen, Oberstdorf, and Ulm are in the dataset. In northern Sweden,
the captured cities include Givle, Gothenburg, Karlstad, Linkdping, Lulea, Orebro, Stockholm, Sundsvall, Ume4, Uppsala,
Vargarda, and Visteras. In Denmark, Copenhagen has been captured. In Finland, the dataset covers data both in the very
north in Muonio, Oulo, and Rovaniemi, as well as Helsinki in the south. The main objective was to capture data under
challenging nighttime and adverse weather conditions. Scandinavians seemed much more used to bad weather because even
under extreme snowfall and rain, the streets were still busy with many pedestrians and cyclists.

In addition to the gated imaging system from Brightway Vision, the vehicle system was equipped with state-of-the-art
sensors for environment perception, i.e. a 64-lines lidar scanner and a 2MP stereo camera. In total, 1.4 million frames at
10 Hz were recorded during all test drives. Frame were discarded if at least one sensor failed due to technical problems or
being covered with snow or dirt. Moreover, before expensive and cumbersome annotation, only the most interesting frames
were selected where the time shift between the gated camera and lidar is small enough that the projected point cloud matches
the semantic image content.

6.2. Annotation

The dataset provides annotations on a subset of 13k images which we extend by an additional 2.5k samples. 3D bounding
boxes are annotated on the lidar point clouds are visualized as a 2.5D bounding box projected on to the RGB and gated
camera frame. Objects up to a distance of 80 m with a minimum number of 5 lidar points are annotated. As the first control
measure, the projected 2.5D bounding boxes illustrate the object dimension and position, which enabled to correct those
measures. Missing annotations are identified and added, along with tight 2D bounding boxes within the RGB camera frame,
while the 2D boxen in the gated frame are only based on the projected 3D box hull. As a second automatic control measure,
the projected 3D bounding boxes are refined based on the intersection over union (IoU) of the projected 3D box and tight 2D
box inside the RGB camera. Note, 3D bounding boxes overestimate the object size at rounded object edges. Therefore, we
require a minimum bounding box overlap of 0.7 IoU. Objects below that threshold are re-annotated by human annotators to
correct either the 3D or 2D box. Finally, all frames are reviewed by another human annotator checking for label consistency
across all sensor modalities. Additionally, the label Don’t Care with a rough bounding box is used when we recognize objects
that cannot intervene in the current traffic situation (e.g. cars in a parking lot or separated highway lane) or when objects
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Figure 4: 3D bounding box distributions for the class Car. The box sizes (height, width, length), yaw angle and distance
from ego vehicle are illustrated.

such as pedestrians at large distances cannot be distinguished. Groups where individual objects can not be differentiated are
labelled with the property is group.

Note that the annotations from previous work in Bijelic et al. [1] were mainly done on the RGB and lidar modalities. In
most cases the labels for the gated camera were transferred semi-automatically through constant calibrations. Hence, the 2D
boxes are only based on the projected 3D box hull and are not tight around the objects within the gated frame. Only objects
that were exclusively visible in the gated images were annotated independently. To remove this limitation and increase the
annotation quality we re-annotate precise 2D bounding boxes for all 100k objects in the 13k gated images and filter non-
matching 3D boxes due to time misalignment issues. To increase performance further we provide 2.5k labels from a similar
gated setup with lidar and RGB image ground truth data to enrich the dataset further.

Bounding box and object distributions for the refined dataset can be found below.

6.3. Dataset Distribution

Figures 4 and 5 visualize the specific object distributions for the classes Car and Pedestrian, respectively. The dimensions
of a car are approximately normally distributed around a mean of 1.8 m x 4.1 m x 1.5m (W x L x H) while the mean dimen-
sions for pedestrians is 0.6 m x 0.5m x 1.7m (W x L x H). Most objects are either perpendicular or in line with the ego-car.
The number of objects decreases slightly with distance up to the maximum annotation distance of 80 m. Figure 6 shows the
total number of 52,580 cars and 38,567 pedestrians.
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