
Supplemental Material: Thallo – Scheduling for High-Performance
Large-scale Non-linear Least-Squares Solvers

MICHAEL MARA, FELIX HEIDE, MICHAEL ZOLLHÖFER, PAT HANRAHAN, MATTHIAS NIESSNER
ACM Reference Format:
Michael Mara, Felix Heide, Michael Zollhöfer, Pat Hanrahan, Matthias
Nießner. 2021. Supplemental Material: Thallo – Scheduling for High-
Performance Large-scale Non-linear Least-Squares Solvers. ACM Trans.
Graph. 1, 1, Article 1 (January 2021), 11 pages. https://doi.org/10.1145/
3453986

This supplemental document is divided into the following sections:
• Section 1 is an expanded description of the various applica-
tions we implemented in Thallo.

• Section 2 gives absolute timing information for the architec-
tures in the exhaustive autoscheduling experiment.

• Section 3 provides a more detailed description of the DSL
itself.

• Section 4 provides a brief discussion and analysis of code
complexity for applications written in our system.

• Section 5 is a brief validation of solvers generated in Thallo
on the classic NIST StRD benchmark.

• Section 6 is a more in-depth evaluation of the Bundle Adjust-
ment example, which is a heavily studied application.

• Section 7 provides an evaluation of the predictiveness of the
cost model used in the autoscheduler.

1 APPLICATIONS IN DEPTH
Weprovide slightly expanded descriptions of each of the applications
used in the paper here. For easy reference, we present the timing
results here again in Table 1.

1.1 BundleFusion (Sparse and Dense)
Bundle Adjustment is at the core of every structure-from-motion
framework (SfM). It is used estimate accurate and globally-
consistent camera parameters alongside a sparse 3D reconstruction
[Agarwal et al. 2011; Jebara et al. 1999; Schönberger and Frahm 2016;
Triggs et al. 2000] from a set RGB images. BundleFusion [Dai et al.
2017] formulates the analog problem for the RGB-D casewith known
depth. It uses both sparse image correspondences and dense depth
maps to achieve highly-accurate loop closure even for large-scale
indoor scenes based on a hand-written data-parallel GPU solver.
Figure 1 shows an example of scene reconstruction before and after
optimization using a solver generated by Thallo.

Author’s address: Michael Mara, Felix Heide, Michael Zollhöfer, Pat Hanrahan, Matthias
Nießner.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2021/1-ART1 $15.00
https://doi.org/10.1145/3453986

Fig. 1. An example of 3D reconstruction before and after optimizing the cam-
era poses with solvers generated by Thallo. Global optimization increases
the global consistency of camera poses and thus improves reconstruction
quality.

For a sparse set of inter-frame correspondences C and a set of N
images, a global alignment energy is optimized to find the best rigid
camera transformations Ti such that the total point-to-point error
of a sparse set of detected and matched feature points is minimized:

T∗i = argmin
Ti

N∑
i=1

N∑
j=1

∑
(l,k)∈C(i, j)

����Ti cki − Tjclj
����2
2 . (1)

Here, C(i, j) is the set of all correspondences (k, l) between the
i-th and j-th frame and cki is the 3D position of the k-th detected
feature point in frame i . The rigid transformations Ti ∈ R4×4 encode
camera rotation and translation and map the 3D points from camera
to world space.
In addition to the sparse alignment term of BundleFusion [Dai

et al. 2017], we demonstrate the optimization of the dense geo-
metric alignment terms using Thallo, on a representative 11-frame
chunk, which is the most challenging real-time optimization prob-
lem tackled in BundleFusion. This increases the overall number of
residuals from about 2000 (for the sparse term only) to > 265000.
In addition, the complexity of the scheduling drastically increases
since the exact number of dense residual terms depends on the avail-
able depth values as well as found matches for each frame, which
makes implementing a hand-crafted implementation particularly

2021-06-14 17:59. Page 1 of 1–11. ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/3453986
https://doi.org/10.1145/3453986
https://doi.org/10.1145/3453986

1:2 • Michael Mara, Felix Heide, Michael Zollhöfer, Pat Hanrahan, Matthias Nießner

Optimization Problem
BundleFusion Face Fit Bundle Adjust Deconv. Deconv. SV

Solver [2017] [2016] Shape/Shading [2000] (11 × 11) (15 × 15) Deconv.

Ceres [2010a] 5394.10ms 25612.1ms 21982.3ms 11954.56ms 25304.85ms 55158.87ms 81344.37ms
Opt DSL [2017] 110.39ms 1057.8ms 2259.6ms 114.78ms 195.93ms ∞ ∞
Hand-written CUDA 5.57ms 1946.5ms N/A N/A N/A N/A N/A

Ours (Unscheduled) 106.3ms 1013.1ms 2235.6ms 105.81ms 187.73ms 253.39ms 452.16ms
Ours (Auto) 2.96ms 46.3ms 171.86ms 89.47ms 46.58ms 93.11ms 137.92ms

Table 1. Copy of main result table from the paper: time-to-convergence of different solvers on various applications. From top to bottom, we have solvers
generated by the Ceres library [Agarwal et al. 2010a], solvers generated by Opt [Devito et al. 2017], handwritten expert CUDA solvers (using hand-coded
derivatives) if existent, solvers generated by Thallo with no scheduling annotations (and no autoscheduling), and solvers generated by Thallo with autoscheduling.
The fastest implementation for each problem is bolded. Note that Ceres is a flexible high-level library that executes on the CPU and thus executes on different
(lower-powered) hardware, while the other systems use the more powerful GPU. Also, Opt fails to compile for 15 × 15 Deconvolution and Spatially-Varying
Deconvolution.

…}}

Fig. 2. Bundle Adjustment takes as input pairwise correspondences between
2D points in a set of images and solves for globally consistent camera
positions, rotation, and distortion parameters, alongside 3D locations for
the image points. This produces a sparse 3D map of the scene captured by
the images.

challenging. Thallo outperforms the state-of-the-art hand-written
GPU solver of [Dai et al. 2017] by over 30% and is over 35× faster
than other high-level systems (Opt/Ceres); see Table 1.

1.2 Bundle Adjustment
For completeness, we implemented standard Bundle Adjustment,
formulated as in Bundle Adjustment in the Large [Agarwal et al.
2010b]. In this section we evaluate the solvers on the second largest
problem in the BAL dataset. The optimization is posed over 4585
cameras, each of which has 9 unknown parameters. There are
1324582 correspondences, and twice as many residual terms. We
solve to an error threshold of τ = 0.1. See Section 6 for a much more
comprehensive comparison on all of the BAL problems, and with
stricter error thresholds.

Thallo is over 100× faster than Ceres at this high error tolerance.
It also takes 20% less time than the equivalent Opt solver, despite
the Thallo schedule chosen strongly resembling the de facto Opt
schedule; see Table 1.

1.3 Shape-and-Shading
Shape-From-Shading refines depth data from an RGB-D sensor us-
ing the detailed color image and a low-order spherical harmonic
estimation of the lighting. The original realtime work in [Wu et al.
2014] and reimplemented in Opt [Devito et al. 2017] estimated the
lighting in a preprocessing step and then fixed it while optimizing
just for the depth values. We instead solve the significantly more

complicated Shape-and-Shading problem by solving jointly for the
depth values and the lighting conditions. This incorporates the nine
spherical harmonic values to all of the shading residuals as addi-
tional unknowns. We also add an explicit lighting term that directly
penalizes the difference between computed and input shading val-
ues (as opposed to just the gradients of those terms). Figure 3 shows
an example of depth refinement before and after optimization using
a solver generated by Thallo. This produces a significantly different
Jacobian structure with far more nonzero terms than the original
problem, and significant shared computation among different resid-
uals and their partial derivatives. The autoscheduled solver is 13×
faster than the default solver which materializes nothing outside of
the inner loop.

Intensity Depth Lighting

Refined Depth + Lighting

+ +

Fig. 3. An example of jointly refining depth data and an initial lighting
estimate using a detailed color image for shading penalty terms. We refer to
this optimization application as Shape-and-Shading, in contrast to Shape-
from-Shading which keeps the lighting estimate fixed.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2021. 2021-06-14 17:59. Page 2 of 1–11.

Supplemental Material: Thallo – Scheduling for High-Performance Large-scale Non-linear Least-Squares Solvers • 1:3

Fig. 4. An example of parametric model fitting using optimization.

1.4 Face Template Fitting
Non-rigid model-based registration is a fundamental building block
for a large variety of tracking and reconstruction approaches [Loper
et al. 2015; Romero et al. 2017; Thies et al. 2016; Xu et al. 2018]. One
prominent example is fitting an affine parametric 3D mesh model P
to 2D observations, e.g., as done in the Face2Face [Thies et al. 2016]
approach. In the following, we assume that the embedding of a mesh
is represented by a vectorm ∈ R3N that stacks its N vertices. In the
case of face tracking, the affine parametric model is then defined by
a low-dimensional expression subspace ofM blendshapes spanned
by a matrix B ∈ R3N×M that models the facial expressions relative
to a neutral face template a ∈ R3N :

m = P(c) = a + Bc .

Each of theM blendshapes represents a different facial expression as
per-vertex offsets to the neutral face template. New faces m ∈ R3N
are created by interpolation of theseM displacement vectors based
on theM blendshape weights c ∈ RM . We fit the model to 2D data
by finding the best coefficients c∗, such that Θ(P(c∗)) best matches
a set of target correspondences t ∈ R2N , where Θ is a projective
camera transformation (using the 9-dimensional parameterization
from BAL [Agarwal et al. 2010b]):

c∗ = argmin
c

����t − Θ(P(c))
����2
2 . (2)

Typically, the number of observations is much larger than the
number of blendshapes N ≫ M , hence the resulting Jacobian matrix
has a lot more rows than columns and the Jacobian matrix is fully
dense. This optimization is run in alternation with a correspondence
search to build a model-based non-rigid ICP. We generate solvers
for this optimization with Thallo and compare to Opt and a hand
written solver. Opt has no reduction construct, so summing along
the M = 140 basis shapes requires an explicit loop in the energy,
and an explicit connectivity structure that consumes 4n(2m + 1)
bytes forM blendshapes with N vertices, far in excess of all other
data required for the problem . In fact, the schedule used by Opt
generates code that fails to compile atM = 210 as the per-residual
code exceeds Cuda register limits. Using Thallo’s parallelize_sum
scheduling construct, we parallelizing along the rows as well as
the columns of the Jacobian to materialize it and then do dense
matrix-matrix and matrix-vector multiplies; this allows Thallo to
outperform other high-level solvers; see Tab. 1.

1.5 Scheduling ProxImaL Optimization Problems
We evaluated a method for using Thallo on a general class of prox-
imal optimization problems [Parikh and Boyd 2013] for imaging

applications, scheduling the sub-problems of the ProxImaL optimiz-
ation compiler [Heide et al. 2016]. By implementing efficient non-
linear solves, our proximal backbone not only allows for significant
runtime performance improvements but also enables non-linear
problem instances that could previously not be tackled due to a lack
of efficient proximal operators. The elevated class of image optimiz-
ation problems follows the structure proposed in [Heide et al. 2016],
a sum of penalties fi on linear transforms Kix with x ∈ Rn as the
unknowns:

argmin
x

I∑
i=1

fi (Kix) with K =

K1
...

KI

 , (3)

where K ∈ Rm×n is one large matrix that is composed of stacked
linear operators K1, . . . ,KI . The linear operator Ki ∈ Rmi×n selects
a subset ofmi rows of Kx. This subset of rows is then the input for
the penalty functions fi : Rmi → R. In existing methods, includ-
ing [Figueiredo and Bioucas-Dias 2009, 2010], these penalty func-
tions were restricted either to point-wise operators with efficient
separable implementations, or the corresponding K as structured op-
erator, e.g., spatially-invariant convolution kernels. In other words,
these methods assume that an efficient proximal operator for f is
present, which is formalized as

proxτ f (v) = argmin
x

(
f (x) + 1

2τ
∥x − v∥22

)
,

with scalars τ > 0 and v ∈ Rmi , please see [Parikh and Boyd 2013]
for a detailed description. The proposed method relaxes these restric-
tions and allows for non-local, non-linear least-squares functions,
in addition to the separable ones.
We build on top of the ProxImaL compiler, that solves problems

in the form of Problem (3) using choices of proximal algorithms,
including the popular Chambolle-Pock [Chambolle and Pock 2011]
and Half-Quadratic Splitting [Robini and Zhu 2015]. We modify
splitting partitions Ω and Ψ of the set of functions { f1, . . . , fI } by
including all least-squares, linear or non-linear in Ω, and all point-
wise functions in Ψ. With this splitting, we define an example of the
Alternating Direction Method of Multipliers [Boyd et al. 2001] in Al-
gorithm 1. The algorithm runtime is dominated by the least-squares
problem in the first update, as all other point-wise root-finding
problems can be implemented either as analytic solutions or using
efficient iterative methods [Parikh and Boyd 2013]. We replace the

ALGORITHM 1: ADMM to solve Problem (3)

Initialization: ρ > 0, α ∈ (0, 2), (x0, z0, λ0)
for k = 1 to V do

xk+1 = argmin
x

∑
i∈Ω fi (x) +

∑
j∈Ψ(ρ/2) ∥Kjx − zkj + λ

k
j ∥22

zk+1j = prox fj
ρ
(Kj (αxk+1j + (1 − α)xkj) + λkj) ∀j ∈ Ψ

λk+1j = λkj + Kj
(
αxk+1j + (1 − α)xkj

)
− zk+1j ∀j ∈ Ψ

end

CG and LSQR implementations for this dominating sub-problem,
which rely on unscheduled matrix-free function calls, with solvers
generated by Thallo. We can also fold non-linear functions into this

2021-06-14 17:59. Page 3 of 1–11. ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:4 • Michael Mara, Felix Heide, Michael Zollhöfer, Pat Hanrahan, Matthias Nießner

step which cuts off nested splitting and leads to improved conver-
gence. Our Thallo-ProxImaL bridge handles expensive least-square
problems, linear or non-linear, while keeping the existing Halide ker-
nels for straight-forward point-wise operations and matrix-vector
product evaluations.

1.5.1 Poisson Deconvolution. Fig. 5 shows an example of Poisson-
deconvolution for Nexus 5 smartphone optical blur. Although mod-
ern smartphone optics feature highly-optimized stacks of up to
six individual lens elements, residual aberrations may still occur
due to manufacturing tolerances or imperfections in the individual
lens elements. We calibrated these aberrations for a Nexus 5 rear
camera using the method from Mosleh et al. [2015]. The spatially
varying aberrations are shown on the right. While existing methods
require these aberrations to be local point-spread-functions (PSFs),
i.e., spatially-invariant stencil-operations in a local area, Thallo lets
us formulate per-pixel PSFs with arbitrary support over the image
plane. We adopt the Poisson optimization problem from [Heide et al.
2016] with identical regularization weights on the total-variation

Fig. 5. Spatially-varying deconvolution. This problem cannot be expressed
in the original ProxImaL framework, but can with the new Thallo backend.

term and schedule all quadratic problems with our efficient Thallo
solver. Compared to methods that assume Gaussian noise and a
single convolutional operator, such as the popular approach of
Krishnan et al. [2011], the proposed model allows for accurate re-
construction results, reducing residual artifacts and ringing around
fine details. Note that we improve on the baseline because Thallo
allows us to more accurately model dense image formation models.

Not only does Thallo improve image quality, but it also substan-
tially improves on runtime for problems that can be expressed. We
compare runtime results for Poisson deconvolution examples with
spatially-invariant 11 × 11 and 15 × 15 kernel in Table 1. The sched-
ule used by our system involves generating an intermediate image
which is the kernel convolved with the unknowns. This is more effi-
cient than a full matrix-free implementation at mid-to-large kernel
sizes. Note also that Opt [Devito et al. 2017] fails to compile when
the kernel surpasses 11 × 11, as the matrix-free approach exceeds
the compilers memory limits. At this point, our solver is over 4×
faster than the one generated by Opt. We lack a GPU comparison for
the spatially-variant version of this problem, but our autoscheduled
solver is over 3× faster than a solver produced with the default
schedule.

2 ARCHITECTURE COMPARISON
We ran our exhaustive scheduling experiment on three separate
platforms. First, a desktop Linux machine with an NVIDIA TITAN X
(Pascal) and an Intel Core i7-6700K Processor, which has 4 physical
and 8 virtual cores. Second, a Google Compute Engine instance
with a NVIDIA Tesla K80 GPU a 2 vCPUs on an Intel Broadwell
processor. Third, we use an NVIDIA Jetson Nano Devkit, which
is a low power embedded GPU. This final GPU has a theoretical
peak bandwidth three orders of magnitude lower than the others,
due to a smaller memory bus and much lower memory clock rate.
In the main paper, we reported the relative slowdown of using the
autoscheduler compared to using the best possible schedule on these
architectures for a suite of problems. Here we repeat those results
and add the absolute times for the autoscheduled solvers in Figure 6.

3 LANGUAGE DETAILS

3.1 C API
The core of the API design and energy specification draws heavily
fromOpt; but is streamlined tomore closely mimic the graphics APIs
which inspired it. The specification especially is easy to understand
by analogy to an HLSL/GLSL shader.

3.2 Energy and Scheduling Language Description
The Thallo energy specification and scheduling languages are em-
bedded in Lua. Users build up symbolic representations of the energy
function through operator-overloading. Once an energy is defined,
users can make method calls on the symbolic representation to
provide the compiler with metadata for scheduling the energy.
There are three distinct parts of the energy specification (the

inputs, the expression language where the computation is specified,
and the outputs in the form of named residuals) and each has differ-
ent scheduling constructs.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2021. 2021-06-14 17:59. Page 4 of 1–11.

Supplemental Material: Thallo – Scheduling for High-Performance Large-scale Non-linear Least-Squares Solvers • 1:5

Titan X
Desktop GPU

K80
Datacenter GPU

Jetson Nano
Edge-Compute GPU

% Off Optimum

Example TITAN X K80 Nano

BundleFusion 0.00% 1.93% 1.19%
Projective Face Fit 1.67% 0.75% 4.04%
Shape and Shading 15.38% 4.46% 20.72%
Bundle Adjust 7.19% 8.30% 10.19%
Deconv. (11 × 11) 4.93% 5.74% 1.52%
Deconv. (15 × 15) 3.93% 6.95% 1.73%
SV Deconv. 0.00% 0.45% 1.81%
COT 29.81% 1.09% 2.99%

Absolute Solve Time (Autoscheduled)

Example TITAN X K80 Nano

BundleFusion 2.96ms 8.82ms 698ms
Projective Face Fit 46.3ms 253.10ms 128166ms
Shape and Shading 171.86ms 434.06ms 106610ms
Bundle Adjust 89.47ms 131.94ms 44916ms
Deconv. (11 × 11) 46.58ms 112.75ms 38072ms
Deconv. (15 × 15) 93.11ms 215.17ms 67776ms
SV Deconv. 137.92ms 319.03ms 89058ms
COT 42.11ms 115.87ms 4862ms

Fig. 6. Top Table: relative increase in solver time from using the autosched-
uled solver versus the best possible one on three different platforms. Bottom
Table: absolute solve times for the autoscheduled solvers across the plat-
forms.

3.2.1 Energy Inputs. At the top of the specification, we list Abstract
Dimensions. They are used for both, specifying the dimensions of
input arrays, as well as defining Index Domains for defining what
we are mapping residuals over. Using Sparse BundleFusion as an
example (see Sec. 1.1 for more details of the problem statement), we
have T camera poses (one for each time step t) and C correspond-
ences.
T,C = Dims("T","C")

A key concept of the energy specification language is that of an
Index Domain. A new Index Domain can be generated from any
Dimension by calling it (t = T()). These Index Domains can then
be used to index into both input arrays and expressions.
Next is the input block, where we declare the multidimensional

arrays, scalar parameters, and sparsity structures we take as input
from the CPU code using Thallo. This is roughly analogous to shader
uniform blocks, used in GLSL.
in = Inputs {

Cameras = Unknown(float6, {T})
Pos_i = Array(float3, {C})

void CurveFit(int datasize, float* params, float* data) {
Thallo_InitializationParameters init = {};
init.doublePrecision = 0; // Single-precision only

init.autoschedule = 1; // Use the autoscheduler

ThalloState* s = Thallo_NewState(init);
// load the Thallo DSL file containing the cost description
ThalloProblem* problem = Thallo_ProblemDefine(s,"curvefit.t");
// describe the dimensions of the instance of the problem
uint32_t dims[] = { 1, observation_count };
ThalloPlan* plan = Thallo_ProblemPlan(s, problem, dims);
// run the solver
void* problem_data[] = { params, data };
Thallo_ProblemSolve(s, plan, problem_data);
double cost = Thallo_ProblemCurrentCost(s, plan);
Thallo_PlanFree(s, plan);
Thallo_ProblemDelete(s, problem);
return cost;

}

Fig. 7. Thallo C/C++ API calls that use the curve fitting program. The high-
lighted line enables our autoscheduler to determine a high-performance
structure for the solver without any hand optimization.

Pos_j = Array(float3, {C})
i = Sparse({C},{T})
j = Sparse({C},{T})
weightSparse = Param(float)

}

Every energy specification must have one input block declared with
Inputs{}. The listing above shows all four different types of inputs:

• Param specifies a scalar, its only argument is its type.
• Array specifies a multidimensional array, its first argument is
the scalar type, the second argument are the dimensions of
the array, provided as a list of Abstract Dimensions.

• Unknown specifies the variables we are optimizing for. It is
otherwise identical to Array.

• Sparse specifies a mapping from indices of one set of dimen-
sions to another.

Unknowns, Arrays, and Sparse constructs can all be indexed into
using Index Domains.
Occasionally, we do not want to optimize for all of the values

in an Unknown array. For example, we may want the camera pose
at time t = 0 to be the identity transform throughout the solve.
We provide the Exclude construct to simplify this significantly and
provide information to the compiler:
in.Cameras:Exclude(eq(t,0));

3.2.2 Expression Language. After the inputs have been declared,
users can combine them to form complicated residual terms using
standard scalar (or small vector/matrix) operations. Expressions are
implicitly mapped over the cross-product of the dimensions of each
Index Domain used to construct it.

Since Thallo’s energy language is embedded in Lua, users can use
standard programming features such as functions and loops when
constructing their residual terms:
c = C()
cam_i = in.Cameras(in.i(c))
cam_j = in.Cameras(in.j(c))
TI = get_rigid_transform(cam_i)
TJ = get_rigid_transform(cam_j)
result = rigid_transform(TI,in.Pos_i(c))

- rigid_transform(TJ,in.Pos_j(c));

2021-06-14 17:59. Page 5 of 1–11. ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:6 • Michael Mara, Felix Heide, Michael Zollhöfer, Pat Hanrahan, Matthias Nießner

This is the entirety of the calculation of the (unweighted) sparse
term of BundleFusion [Dai et al. 2017]. c is an Index Domain for the
correspondences, we use it to index into the Sparse constructs in.i
and in.j to get the two camera indices for a given correspondence
(which are indices into the dimension T). We use helper functions
to extract a 4 × 3 matrix from each of the cameras stored as float6
vectors, and then apply another helper to get world space positions
for corresponding points at in.Pos_i(c) and in.Pos_i(c), which
we subtract to get three residuals (the three components of the
positional difference between the two points).
Every expression above is implicitly mapped over C , since it is

the only index domain used in all of the expressions. In fact, you
can index into any expression: result(c) is identical to result.

A more interesting use case of this can be seen in a simple 5 × 5
deconvolution example:
W, H, K = Dims("W", "H", "K") -- K = 5
in = Inputs {

X = Unknown(float, {W,H}) -- Image
kernel = Array(float, {K,K}) -- Convolution Kernel

}
x,y,k_0,k_1 = W(), H(), K(), K()
kernel_weight = in.kernel(k_0,k_1)
pixel = in.X(x-k_0+2, y-k_1+2)
conv = Sum({k_0,k_1}, kernel_weight*pixel);

Here, the kernel_weight is implicitly mapped over K × K . Then,
pixel is implicitly mapped overW ×H × K × K . We used the Sum()

construct to explicitly sum over both of the K dimensions, leaving
us with conv, which is implicitly mapped overW ×H , and represents
the result of X convolved with kernel.
We can then go one step further and index conv twice at two

different locations (at a pixel and the pixel to its right), allowing us
to compute a finite-difference horizontal gradient of the convolved
image. This final expression is also implicitly mapped overW × H .
The Sum() construct allows us to express residuals with a large

number of intermediate terms concisely, and, since summation is
associative and commutative, can expose extra dimensions of paral-
lelism. The explicit indexing of intermediate expressions is conveni-
ent for drastically simplifying energy specifications, and serves as a
heuristic clue for our autoscheduler (if a term is indexed multiple
times it is likely fruitful to materialize it).

Every expression can be marked for materialization in the sched-
ule by calling :materialize(true) on it. Its partial derivatives can
also be materialized by calling :materializeJ(true).
The Sum() expressions are give an extra scheduling construct,

:parallelize(true). When set, the compiler will parallelize applic-
ations of the Jacobian across both residuals and the terms of the
sum.

Constant. A user can mark any expression as a constant (that
is, not a function of the unknowns), by wrapping it in a call to
Constant(). This causes all partial derivatives of the expression
to be zero, even if it is calculated from unknowns. While our ap-
proach is mainly focused on non-linear least squares problems,
this can for example be used to tackle the minimization of general
ℓp -problems using Iteratively Reweighted Least Squares [Holland
and Welsch 1977]. The key idea of IRLS is to transform a general
unconstrained optimization problem to a sequence of reweighted
least-squares problems by splitting the ℓp -norm into a quadratic and

a non-quadratic part. Each of the reweighted least-squares problems
can be tackled using Gauss-Newton (GN) or Levenberg-Marquard
(LM). The reweighting factor is exactly the non-quadratic part and
is assumed to be constant during each IRLS iteration step. This be-
havior can be obtained by wrapping the reweighting factor with
Constant().

3.2.3 Residual Definitions. The final energy function is set by con-
structing a Residuals block, which consists of a named list of ex-
pressions. Each of the named expressions is mapped over all Index
Domains used within it, and referred to as a Residual Group.

e = Residuals {
conv = expression0
reg = expression1

}

The final energy is the sum of the squares of all components of the
Residual Group mapped over their Index Domains, and the majority
of scheduling choices operate on Residual Groups.
Residual Groups mapped over the same Index Domains can be

merged by calling merge on the residual block with the groups as
the arguments (merged_group = e:merge(conv,reg)). Groups that
are merged together are scheduled and computed together, enabling
them to share computation for common subexpressions.

Every named Residual Group has five fields, J, JtJ, Jp, JtJp, and
JtF. The first three of these have a function :materialize(bool) to
control the coarse-grained materialization of algebraically relevant
intermediates. JtJp and JtF are implicitly always materialized, as
they are required for the solver.
Any expression or Residual Group field can have its indices re-

ordered by the :reorder({IndexDomains}) construct, which can be
helpful for coalescing writes to avoid atomic contention.
Though not explored further in this paper, we also provide

support for performing direct linear solves when materializing
JT J; the entire set of residuals can be marked for solving with
:use_direct_solve(). This changes the numerical properties of the
full solver substantially, so we do not include it in the autoscheduler.

4 CODE SIMPLICITY
One of the core design goals of Thallo is to allow users to quickly
and easily write solvers for potentially complex optimization prob-
lems. Our Opt-like simple C/C++ API and design mirroring widely
used shader languages helps achieve this goal. In addition, we en-
sure that the energy specifications themselves are expressive and
concise, and that users can write high-performance schedules with
relatively little code (if they forgo autoscheduling). As an admittedly
rough proxy for simplicity, we compare the lines of code for all of
the problems introduced in this paper and the five examples from
[Devito et al. 2017] with handwritten solvers and other high-level
systems (Ceres/Opt); see Table 2.
For a fair comparison, we count only energy-specific code, and

specifically avoid counting the boilerplate looping code and matrix
utility function implementations for Ceres and handwritten solvers.
In particular, we do not count the solver structure for handwritten
code, even though the structure changes with different JT Jp materi-
alization strategies and is not shared between the different types.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2021. 2021-06-14 17:59. Page 6 of 1–11.

Supplemental Material: Thallo – Scheduling for High-Performance Large-scale Non-linear Least-Squares Solvers • 1:7

All implementations are best-effort and no attempt was made to
artificially shorten or lengthen the code.
In terms of simplicity, we are on par with Ceres and Opt, which

are also high-level languages; however, again note the significant
performance gain as evaluated in Table 1. Compared to handwrit-
ten code, our code is orders of magnitude shorter. In addition, for
handwritten solvers, any change in the energy function touches
code in many different places and must be manually verified, and
materialization choices can have a large impact on the majority of
the code, including structural code not captured by these metrics.
These changes in Thallo are simple one-line scheduling constructs,
and are correct by construction.

Lines of Code
Problem Hand. Ceres Opt Ours Sched.

BundleFusion Sparse 216 17 15 17 2
BundleFusion Full 366 104 97 86 5
Shape-And-Shading N/A 183 110 99 3
Face Fitting 94 54 45 33 2
Deconvolution N/A 35 37 27 2
SV Deconvolution N/A 37 40 29 2

ARAP Mesh Deform 210 36 18 18 0
Image Warping 280 36 21 26 2
Poisson Image Editing 67 16 13 14 2
Shape From Shading 445 193 99 99 3
Volumetric Deform N/A 36 21 23 2

Table 2. Lines of code to implement various optimization problems in dif-
ferent frameworks. The rightmost column reports the number of lines of
scheduling code to produce the fastest manual schedules.

5 NIST STRD
We validate solvers generated by Thallo with various schedules
on all problems from the National Institute of Standards and Tech-
nology (NIST) benchmark for non-linear least squares problems,
the Standard Reference Database 1401. We generate a Performance
Profile for iteration count (as opposed to wallclock time, as in Sup-
plement 6) with τ = 10−4 for six solvers generated by Thallo and
one Ceres solver. The Thallo solvers are generated with three dif-
ferent schedules, representing different choices in coarse-grained
materialization that can influence the results due to floating-point
non-associativity.
Overall, all solvers, regardless of schedule, perform essentially

on par with each other, with the exception of one problem. Single-
precision is insufficient for our solvers to converge on this numer-
ically challenging problem. However, the double-precision solvers
generated by our method converge using roughly 100 iterations less
than the equivalent Ceres solver. See Figure 8 for more details.

6 BUNDLE ADJUSTMENT EVALUATION
Bundle Adjustment is a widely studied problem. We performed an
extensive comparison of Levenberg-Marquardt solvers generated by
Thallo, solvers generated by Opt, and several generated by Ceres.

1https://www.itl.nist.gov/div898/strd/nls/nls_main.shtml

0 25 50 75 100 125
Iterations

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f P
ro

bl
em

s
So

lv
ed

NIST StRD Dataset: = 0.0001

 Ceres
 Thallo (float)[JtJp]
 Thallo (float)[Jt[Jp]]
 Thallo (float)[[JtJ]p]
 Thallo (double)[JtJp]
 Thallo (double)[Jt[Jp]]
 Thallo (double)[[JtJ]p]

Fig. 8. Performance Profile for iteration count with τ = 10−4.

6.1 BAL Dataset
Bundle Adjustment in the Large[Agarwal et al. 2010b] introduced a
new method for inexact Levenberg-Marquardt with a Schur precon-
ditioner for large scale bundle adjustment problems. The authors
of the paper also release a corresponding dataset, which we refer
to as the BAL Dataset consisting of five different scenes with incre-
mentally adjusted problem sizes. Altogether there are 98 different
bundle adjustment problems split between them.

6.2 Performance Profiles
It is common to use Performance Profiles to compare the performance
of a suite of optimization solvers on a large set of test problems;
the resulting graphs capture robust information on solver time (or
iteration count) vs. convergence (or lack thereof) [Dolan and Moré
2002]. We summarize the method here, based on the notational
conventions used in Visibility Based Preconditioning for Bundle
Adjustment [Kushal and Agarwal 2012].

For a given set of minimization problems P, and a set of solvers to
compareS, run all solvers on all problems until a given convergence
criteria C (in our examples, C is always a threshold wall-clock time).
Then let f (p, s) denote the minimum cost on problem p reached
using solver s and let f ∗(p) = mins f (p, s), be the minimum cost
across all solvers for problem p.

Now, for a user specified tolerance 0 < τ < 1, define

fτ (p) = f ∗(p) + τ (f0(p) − f ∗(p))

where f0(p) is the initial cost of p. Effectively, fτ (p) is the cost at
which p has been solved to within a tolerance of τ .

Let t(p, s) denote the time it takes solver s to reach fτ (p) with a
value of inf if the solver fails to reach fτ (p).

The performance profile of a solver s over the problem set P is
the curve

ρ(s,α) = 100 × |{p : t(p, s) < α mins t(p, s)}|
|P |

2021-06-14 17:59. Page 7 of 1–11. ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://www.itl.nist.gov/div898/strd/nls/nls_main.shtml

1:8 • Michael Mara, Felix Heide, Michael Zollhöfer, Pat Hanrahan, Matthias Nießner

ρ(s,α) measures the percentage of the problems in the suite that
are solved to the tolerance τ by solver s within the time bound
α mins t(p, s).

6.3 Experiments
Following[Kushal and Agarwal 2012], all the iterative solver based
bundle adjustment algorithms were run inside an inexact LM
loop [Wright and Holt 1985], with the forcing sequence set to a
constant ηk = 0.1 and the termination rule suggested by Nash and
Sofer [Nash and Sofer 1990]. We use a time budget of 60 seconds
as the sole convergence criterion, C, for all problems. We compare
solvers generated with Thallo (using the autoscheduler) to solv-
ers generated with Opt, and Ceres solvers using a wide variety of
preconditioners, including Schur preconditioning [Agarwal et al.
2010b] and visibility based preconditioning [Kushal and Agarwal
2012].

In Figure 9 we show performance profiles on the combined BAL
dataset, consisting of 98 problems. For τ = 0.1 (which is a viable
threshold in an interactive pipeline), the double-precision solvers
generated by both Thallo and Opt converge on a similar number of
problems roughly 40 times faster than all of the Ceres solvers in our
test suite. At stricter values of τ , the gap closes to approximately
10×. Thallo solvers tend to reach the convergence threshold approx-
imately 25% faster than the equivalent Opt solver for all values of
τ .

We also break down the dataset into its constituent subsets, and
generate Performance Profiles for each of them in Figure 10. Here
we can see that on many problems in the Ladybug dataset single-
precision solvers generated with Thallo are too numerically unstable
to sufficiently converge, though they are much faster for the prob-
lems they do converge for.

Note that Thallo solvers are not doing sophisticated precondition-
ing, which leaves numerical stability and performance on the table.
In particular, the Schur Complement Trick [Agarwal et al. 2010b] is
a target for future integration into Thallo: the compiler infrastruc-
ture already computes the information required to validate that an
energy is of a form that can use a Schur complement in the solve
(the number and kind of unknown accesses per residual).

7 COST MODEL EVALUATION
Our heuristic autoscheduler was built to quickly find a low-cost
schedule among the space of all possible schedules according to the
cost described in Section 5 of the paper, and as we showed, provides
efficient schedules in practice across many platforms. This naturally
presents a question of how predictive our simple cost model is.

In order to evaluate this, we modified our exhaustive autosched-
uler experiment to output the cost model’s cost as well as the time to
run a single nonlinear iteration. We present the results in Figure 11,
with a stochastic subset of results for applications with over 1000
schedules.
For some of the examples the cost model is highly predictive,

for example the coefficient of determination (R2) for Cotangent
Mesh Smoothing is 0.99 and for Poisson Image Editing it is 0.82.
The deconvolutions and Volumetric Mesh Deformation have even
higher R2 values but that appears to be driven by having 2 strong

clusters of schedules, one near the chosen schedule, and a cluster of
extremely expensive schedules that all are evaluated as being about
as expensive as each other. On the other hand, this clustering effect
also explains some of the less impressive correlations: for a clear
example see the Intrinsic Image Decomposition results, where there
are three distinct clusters which have strong correlations within the
clusters and the appropriate relative ordering between the clusters
in terms of cost, but has a nonlinear relationship between the three
clusters: our cost model is accurately able to pick out the fastest
cluster a roughly order the schedules correctly within clusters, but
is unable to provide a direct linear relationship. This happens to an
even greater degree with Face Template Fitting, which has a small
cluster of extremely expensive schedules which nonetheless have a
relatively low estimated cost (though significantly higher estimate
cost than the cluster around the chosen schedule).
This suggests demonstrates that while our simple cost model

is sufficient for acquiring good schedules on all the examples we
looked at, there is plenty of opportunity for improvement by ad-
opting a more advanced cost model, like that in the newest Halide
autoscheduler Adams et al. [2019].

REFERENCES
Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li, Michaël

Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo Durand, and
Jonathan Ragan-Kelley. 2019. Learning to Optimize Halide with Tree Search and
Random Programs. ACM Trans. Graph. 38, 4, Article 121 (July 2019), 12 pages. DOI:
http://dx.doi.org/10.1145/3306346.3322967

Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Simon, Brian Curless, StevenM.
Seitz, and Richard Szeliski. 2011. Building Rome in a Day. Commun. ACM 54, 10
(Oct. 2011), 105–112. DOI:http://dx.doi.org/10.1145/2001269.2001293

Sameer Agarwal, Keir Mierle, and Others. 2010a. Ceres Solver. http://ceres-solver.org.
(2010).

Sameer Agarwal, Noah Snavely, Steven M. Seitz, and Richard Szeliski. 2010b. Bundle
Adjustment in the Large. In Proceedings of the 11th European Conference on Computer
Vision: Part II (ECCV’10). Springer-Verlag, Berlin, Heidelberg, 29–42. http://dl.acm.
org/citation.cfm?id=1888028.1888032

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. 2001. Distributed Optimization and
Statistical Learning via the Alternating Direction Method of Multipliers. Foundations
and Trends in Machine Learning 3, 1 (2001), 1–122.

Antonin Chambolle and Thomas Pock. 2011. A first-order primal-dual algorithm for
convex problems with applications to imaging. Journal of Mathematical Imaging
and Vision 40, 1 (2011), 120–145.

Angela Dai, Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and Christian Theobalt.
2017. BundleFusion: Real-Time Globally Consistent 3D Reconstruction Using On-
the-Fly Surface Reintegration. ACM Trans. Graph. 36, 3, Article 76a (May 2017).
DOI:http://dx.doi.org/10.1145/3054739

Zachary Devito, Michael Mara, Michael Zollhöfer, Gilbert Bernstein, Jonathan Ragan-
Kelley, Christian Theobalt, Pat Hanrahan, Matthew Fisher, and Matthias Niessner.
2017. Opt: A Domain Specific Language for Non-Linear Least Squares Optimization
in Graphics and Imaging. ACM Trans. Graph. 36, 5, Article 171 (Oct. 2017), 27 pages.
DOI:http://dx.doi.org/10.1145/3132188

Elizabeth D Dolan and Jorge J Moré. 2002. Benchmarking optimization software with
performance profiles. Mathematical programming 91, 2 (2002), 201–213.

Mário Figueiredo and José Bioucas-Dias. 2009. Deconvolution of Poissonian images
using variable splitting and augmented Lagrangian optimization. In SWorkshop on
Statistical Signal Processing. 733–736.

Mário Figueiredo and José Bioucas-Dias. 2010. Restoration of Poissonian images using
alternating direction optimization. IEEE Trans. Image Processing 19, 12 (2010), 3133–
3145.

Felix Heide, Steven Diamond, Matthias Nießner, Jonathan Ragan-Kelley, Wolfgang
Heidrich, and Gordon Wetzstein. 2016. Proximal: Efficient image optimization using
proximal algorithms. ACM Transactions on Graphics (TOG) 35, 4 (2016), 84.

PaulW. Holland and Roy E.Welsch. 1977. Robust regression using iteratively reweighted
least-squares. Communications in Statistics – Theory and Methods 6, 9 (Sept. 1977),
813–827. DOI:http://dx.doi.org/10.1080/03610927708827533

T. Jebara, A. Azarbayejani, and A. Pentland. 1999. 3D structure from 2D motion. IEEE
Signal Processing Magazine 16, 3 (May 1999), 66–84. DOI:http://dx.doi.org/10.1109/
79.768574

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2021. 2021-06-14 17:59. Page 8 of 1–11.

http://dx.doi.org/10.1145/3306346.3322967
http://dx.doi.org/10.1145/2001269.2001293
http://ceres-solver.org
http://dl.acm.org/citation.cfm?id=1888028.1888032
http://dl.acm.org/citation.cfm?id=1888028.1888032
http://dx.doi.org/10.1145/3054739
http://dx.doi.org/10.1145/3132188
http://dx.doi.org/10.1080/03610927708827533
http://dx.doi.org/10.1109/79.768574
http://dx.doi.org/10.1109/79.768574

Supplemental Material: Thallo – Scheduling for High-Performance Large-scale Non-linear Least-Squares Solvers • 1:9

100 101 102 103 104 105

Time (ms, log scale)

0

20

40

60

80

100

%
 S

ol
ve

d

Combined: = 0.1

101 102 103 104 105

Time (ms, log scale)

0

20

40

60

80

100

%
 S

ol
ve

d

Combined: = 0.01

102 103 104

Time (ms, log scale)

0

20

40

60

80

100

%
 S

ol
ve

d

Combined: = 0.001

Thallo float Thallo double Opt float Opt double Ceres CGNR Ceres Sparse Schur

Ceres Iter. Schur Ceres Iter. Schur w/ Schur Jacobi Ceres Iter. Schur w/ Cluster Jacobi Ceres Iter. Schur w/ Cluster Tridiagonal

Fig. 9. Performance Profiles on the combined BAL dataset.

Dilip Krishnan, Terence Tay, and Rob Fergus. 2011. Blind deconvolution using a
normalized sparsity measure. In Computer Vision and Pattern Recognition (CVPR),
2011 IEEE Conference on. IEEE, 233–240.

Avanish Kushal and Sameer Agarwal. 2012. Visibility based preconditioning for bundle
adjustment. In 2012 IEEE Conference on Computer Vision and Pattern Recognition.
IEEE, 1442–1449.

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J.
Black. 2015. SMPL: A Skinned Multi-Person Linear Model. ACM Trans. Graphics
(Proc. SIGGRAPH Asia) 34, 6 (Oct. 2015), 248:1–248:16.

Ali Mosleh, Paul Green, Emmanuel Onzon, Isabelle Begin, and JM Pierre Langlois. 2015.
Camera intrinsic blur kernel estimation: A reliable framework. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 4961–4968.

Stephen G Nash and Ariela Sofer. 1990. Assessing a search direction within a truncated-
Newton method. Operations Research Letters 9, 4 (1990), 219–221.

Neal Parikh and Stephen Boyd. 2013. Proximal algorithms. Foundations and Trends in
Optimization 1, 3 (2013), 123–231.

Marc C Robini and Yuemin Zhu. 2015. Generic half-quadratic optimization for image
reconstruction. SIAM Journal on Imaging Sciences 8, 3 (2015), 1752–1797.

Javier Romero, Dimitrios Tzionas, and Michael J. Black. 2017. Embodied Hands: Mod-
eling and Capturing Hands and Bodies Together. ACM Transactions on Graphics,
(Proc. SIGGRAPH Asia) 36, 6 (Nov. 2017), 245:1–245:17. http://doi.acm.org/10.1145/
3130800.3130883

J. L. Schönberger and J. Frahm. 2016. Structure-from-Motion Revisited. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 4104–4113. DOI:
http://dx.doi.org/10.1109/CVPR.2016.445

J. Thies, M. Zollhöfer, M. Stamminger, C. Theobalt, and M. Nießner. 2016. Face2Face:
Real-time Face Capture and Reenactment of RGB Videos. In Proc. Computer Vision
and Pattern Recognition (CVPR), IEEE.

Bill Triggs, Philip F. McLauchlan, Richard I. Hartley, and Andrew W. Fitzgibbon. 2000.
Bundle Adjustment - A Modern Synthesis. In Proceedings of the International Work-
shop on Vision Algorithms: Theory and Practice (ICCV ’99). Springer-Verlag, London,
UK, UK, 298–372.

SJ Wright and John Norman Holt. 1985. An inexact levenberg-marquardt method for
large sparse nonlinear least squares. The ANZIAM Journal 26, 4 (1985), 387–403.

Chenglei Wu, Michael Zollhöfer, Matthias Nießner, Marc Stamminger, Shahram Izadi,
and Christian Theobalt. 2014. Real-time Shading-based Refinement for Consumer
Depth Cameras. ACM Transactions on Graphics (TOG) 33, 6 (2014).

Weipeng Xu, Avishek Chatterjee, Michael Zollhoefer, Helge Rhodin, Dushyant Mehta,
Hans-Peter Seidel, and Christian Theobalt. 2018. MonoPerfCap: Human Performance
Capture from Monocular Video. ACM Transactions on Graphics (2018).

2021-06-14 17:59. Page 9 of 1–11. ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2021.

http://doi.acm.org/10.1145/3130800.3130883
http://doi.acm.org/10.1145/3130800.3130883
http://dx.doi.org/10.1109/CVPR.2016.445

1:10 • Michael Mara, Felix Heide, Michael Zollhöfer, Pat Hanrahan, Matthias Nießner

Thallo float Thallo double Opt float Opt double Ceres CGNR Ceres Sparse Schur

Ceres Iter. Schur Ceres Iter. Schur w/ Schur Jacobi Ceres Iter. Schur w/ Cluster Jacobi Ceres Iter. Schur w/ Cluster Tridiagonal

101 102 103

Time (ms, log scale)

0

20

40

60

80

100

%
 P

ro
bl

em
s

So
lv

ed

trafalgar: = 0.1

101 102 103

Time (ms, log scale)

0

20

40

60

80

100

%
 P

ro
bl

em
s

So
lv

ed

trafalgar: = 0.01

102 103

Time (ms, log scale)

0

20

40

60

80

100

%
 P

ro
bl

em
s

So
lv

ed

trafalgar: = 0.001

101 102 103

Time (ms, log scale)

0

20

40

60

80

100

%
 P

ro
bl

em
s

So
lv

ed

dubrovnik: = 0.1

102 103

Time (ms, log scale)

0

20

40

60

80

100
%

 P
ro

bl
em

s
So

lv
ed

dubrovnik: = 0.01

103

Time (ms, log scale)

0

20

40

60

80

100

%
 P

ro
bl

em
s

So
lv

ed

dubrovnik: = 0.001

101 102 103 104

Time (ms, log scale)

0

20

40

60

80

100

%
 P

ro
bl

em
s

So
lv

ed

venice: = 0.1

102 103 104

Time (ms, log scale)

0

20

40

60

80

100

%
 P

ro
bl

em
s

So
lv

ed

venice: = 0.01

103 104

Time (ms, log scale)

0

20

40

60

80

100

%
 P

ro
bl

em
s

So
lv

ed

venice: = 0.001

100 101 102 103 104

Time (ms, log scale)

0

20

40

60

80

100

%
 P

ro
bl

em
s

So
lv

ed

ladybug: = 0.1

101 102 103 104

Time (ms, log scale)

0

20

40

60

80

100

%
 P

ro
bl

em
s

So
lv

ed

ladybug: = 0.01

102 103 104

Time (ms, log scale)

0

20

40

60

80

100

%
 P

ro
bl

em
s

So
lv

ed

ladybug: = 0.001

101 102 103 104 105

Time (ms, log scale)

0

20

40

60

80

100

%
 P

ro
bl

em
s

So
lv

ed

final: = 0.1

102 103 104 105

Time (ms, log scale)

0

20

40

60

80

100

%
 P

ro
bl

em
s

So
lv

ed

final: = 0.01

103 104

Time (ms, log scale)

0

20

40

60

80

%
 P

ro
bl

em
s

So
lv

ed

final: = 0.001

Fig. 10. Performance Profiles on the BAL sub-datasets. From top to bottom: Trafalgar, Dubrovnic, Venice, Ladybug, and Final. On the Ladybug dataset,
single-precision solvers are unable to satisfactorily converge on the majority of problems, though their double-precision equivalents perform well.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2021. 2021-06-14 17:59. Page 10 of 1–11.

Supplemental Material: Thallo – Scheduling for High-Performance Large-scale Non-linear Least-Squares Solvers • 1:11

Fig. 11. For each application: on the horizontal axis is the cost model’s estimated cost, on the vertical axis is the measured time to run one nonlinear iteration
of the solver generated for a schedule. Each data-point corresponds to a single schedule, and for applications with over 1000 schedules we plot a stochastically
chosen subset. Overlaid is the line generated by a linear regression. The minimal cost (not necessarily the fastest) schedule is highlighted in orange. For some
applications this regression fits the data very well, but for several the limited fidelity of the cost model leads to a ill-fitting regression (though the minimal cost
schedule is still among the fastest).

2021-06-14 17:59. Page 11 of 1–11. ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2021.

	1 Applications In Depth
	1.1 BundleFusion (Sparse and Dense)
	1.2 Bundle Adjustment
	1.3 Shape-and-Shading
	1.4 Face Template Fitting
	1.5 Scheduling ProxImaL Optimization Problems

	2 Architecture Comparison
	3 Language Details
	3.1 C API
	3.2 Energy and Scheduling Language Description

	4 Code Simplicity
	5 NIST StRD
	6 Bundle Adjustment Evaluation
	6.1 BAL Dataset
	6.2 Performance Profiles
	6.3 Experiments

	7 Cost Model Evaluation
	References

