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1. Experimental Image Processing Pipelines and Optics
Modern digital photography pipelines transform an incoming light field from a physical scene into an RGB image via three

sub-modules: a compound optics module, a sensor and an image processing pipeline (ISP). The compound optics contains a
set of lenses that focuses the light field onto a color filter array (CFA) in the sensor. Each photosensor on the CFA, depends
on the type R(ed), G(reen) and B(lue), reads a specific color value by converting the photons into electrons, resulting a RAW
image. In our experiments, we use a FLIR Blackfly S camera employing a Sony IMX249 sensor, which follows the Bayer
CFA pattern. This sensor has a resolution of 1200 × 1920, and each pixel has a value of 12 bit ADC scaled to 16 bit. The
image processing pipeline, through a series of operations, transform the RAW images into the RGB ones.

1.1. Image Signal Processor Pipelines

Image processing pipelines contain a sequence of operations to reconstruct the RGB images from RAW measurements.
Typically, an ISP starts with the white-balance operation, which is responsible for adjusting the RAW measurements such
that white objects will appear as white in the output image. The white-balanced RAW image is then going through the
demosaicking operation, which constructs an initial RGB image. A set of image denoising operations are then applied to this
RGB image, whose color is then adjusted by global operations in the color and tone correction stage. Finally, it is compressed
into other formats such as JPEG and PNG.

In the following, we describe the ISPs that we used in our experiments. We used two black-box/non-differentiable hard-
ware ISPs, the ARM Mali C71 and Movidius Myriad 2 ISPs. In addition to the two hardware ISPs, we also jointly evaluate
two (differentiable) software ISPs. The former only performs bilinear demosaicing and will be referred to as the Demosaicing
ISP. The latter performs bilinear demosaicing operation followed by bilateral filtering [7] and is referred to as Bilateral Filter
ISP.

Demosaicing ISP. Given a RAW image x ∈ Rm×n, where xij is the value at row i and column j (zero-index), and white-
balance coefficients [r, g1, g2, b], the Demosaicing ISP first apply white-balancing function w : Rm×n −→ Rm×n on this
image as follows for each pixels:

xijwb = wij(x, [r, g1, g2, b]) =


r · xij , where i, j mod 2 = 0

g1 · xij , where i mod 2 = 0, j mod 2 = 1

g2 · xij , where i mod 2 = 1, j mod 2 = 0

b · xij , where i, j mod 2 = 1

(1)

where xwb is the white-balanced RAW image. Then, we get the demosaiced image xD by applying the bilinear demosaicing
function k : Rm×n −→ Rm×n×3 on xwb:

xD[R] = xwb,R∗
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 (2)

where xwb,R, xwb,G, xwb,B are RGB masked matrices from xwb, following the Bayer pattern.
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Bilateral Filter ISP. The Bilateral Filter ISP follows exactly the same steps as the Demosaicing ISP, with an additional
bilateral filter operation [9]:

xijF =
1

K

∑
u,v

Gσs
(‖(u, v)− (i, j)‖)Gσr

(‖xuvD − x
ij
D‖)x

ij
D, (3)

where K =
∑
u,v Gσs(‖(u, v) − (i, j)‖)Gσr (‖xuvD − x

ij
D‖), Gσs

is a spatial Gaussian kernel with σs = 1.0 and Gσr
is a

range Gaussian kernel with σr = 0.138. Both kernels use a window size of 13× 13.

Movidius Myriad 2 ISP. The Movidius Myriad 2 [1] is a high-performance and low-power vision processor from Intel
that can achieve a throughput up to 600 megapixels per second. This platform allow the developer to construct a processing
graph, which our is presented in Figure 1. Unlike the differentiable ISPs, this pipeline involves multiple complex processing
steps [1], involving filter operations in both RAW and RGB domain. The white-balanced RAW image first goes through
the sigma denoising, lens shading correction and RAW filter stages, before being demosaiced. Then the pipeline separately
process the luma and chroma factors in the image. After that, they are merged together and the final global tonemapping
operation is applied.
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Figure 1: Movidius Myriad 2 ISP pipeline.

ARM C71 Mali. The ARM Mali-C71 ASIC ISP [5] is capable of processing 12 megapixel streams at up to 100 Hz with
less than one Watt power consumption. The processing pipeline, as shown in Figure 2, contains 7 stages. Before being
demosaiced, the RAW image first goes through the mutli-exposure fusion, RAW HDR processing, noise reduction, and
vignetting and tonemapping stages. The noise reduction blocks contains a complex filtering algorithm that filters the noises
while preserving the edges and texture. In this stage, chromatic abberration correction algorithm is also applied. The RAW
image is then fed into the vignetting and tonemapping stage, which includes radial and mesh shading corrections. The
demosaiced image finally goes through the HDR tonemapping and color correction stages.

DemosaicingVignetting and 
Tonemapping

Color 
Correction

HDR 
Tonemapping

Noise 
Reduction

RAW HDR 
Processing

Multi-exposure 
Fusion

Figure 2: ARM C71 Mali ISP pipeline.

1.2. Optics

Next, we describe in detail the optics that we used in our experiments. Each lens-assembly is focused at infinity with the
screen beyond the hyperfocal distance.

Fujinon CF12.5HA-1. We use the RAW image data captured using a Fujinon CF12.5HA-1 lens for our proxy ISP exper-
iments. According to the manufacture, the lens is made of advanced glass composites and anti-reflective coatings, which
enable it to produce high contrast, detailed images with resolution up to 1.5 megapixels. The field of view (FOV) is 54° on
1” CCD systems. The optical system contains a 1” 12.5mm focal length, which can be adjusted manually. The manual iris
range is from F1.4 to F22.

Cooke Triplet. We use a Cooke triplet design [4] with a manually optimized starting point and optimize it further for spot
size and Modulation Transfer Function (MTF) using Zemax’s Hammer optimization. The compound optics are fabricated
using a positive polymethyl methacrylate (PMMA) as lens material. Additionally, antireflective material is also coating the
lens. The lens has a 25° FOV, an effective focal length of 25mm and an aperture size of 5 mm. We note that PPMA has a
refractive index of 1.493 at 550 nm wavelength. The design is optimized for the Sony IMX249 sensor. We will release the
full Zemax design files for reproducibility.
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2. Network Architectures
In this section, we explain the architecture and training details of the proxy network we used in our experiments. In both

settings, h(x) is a black-box function (ISP or optics and ISP) that maps an input x (RAW or RGB) to a post-processed RGB
image.

Proxy ISPs. The proxy ISP function h̃θ : Rd −→ Rd×3 depends on θ as learnable parameters (i.e. CNN weights) also
maps a RAW image to a post-ISP image. We use bilinear demosaicing as a first layer in this proxy module. Then the
demosaiced RGB image is fed into a U-Net [8]. Our U-Net version uses 32 channels in the first convolutional operation,
with 3 downsampling steps where each step we double the convolutional channel, as in the original version. We use ReLU
activation instead of sigmoid for the output layer, since we found this to improve the approximation performance. The value
of the output image is then clipped to the range of [0, 1].

Proxy Camera. The proxy function for a full camera maps a scene (displayed on a physical screen) to a post-ISP image,
that is h̃θ : Rd×3 −→ Rd×3. Since the U-Net keeps the output dimension to be equal to the displayed image, which has the
dimension of 448 × 448, we reduce the U-Net output by a factor of 2, using bilinear downsampling. This image is then
clipped to the valid range of [0, 1] and fed to the classifier.

Training Loss. Given a set of RAW captures (Proxy ISPs) or display images (Proxy Camera): X = {x1, x2, ..., xN}, where
each xi ∈ Rd, we train the proxy function h̃θ by minimizing the `1 reconstruction loss.

Lproxy =
1

N × d

N∑
i=0

||h(xi)− h̃(xi)||1. (4)

We note that, unlike Tseng et al. [10], our loss function does not contain the perceptual loss term.

Training Details. For training our proposed local proxy function, we use the same loss on the new augmented dataset. For
training the proxy ISP and proxy camera, we train by using a batch size of 16, a learning rate of 0.001, a decay rate of 10−1

every 4500 steps , for a total of 13500 steps. The training set size is 4200 images and the validation set size is 500, sampled
randomly from the Imagenet dataset. To train the local proxy, we use a batch size of 8 and fix the learning rate to 10−5.

3. Limitations of Query-Based Methods
We note that, theoretically, one can estimate the gradient∇δL(f(x+ δ), t) by using query-based black-box attacks. This

approach [2, 6, 3, 11], however, is impractical and not scalable in our scenario since it requires a few thousands queries per
image, and the capturing and process time is 3 sec (physical ISP attack) and 5 sec (physical ISP and optics attack) per image.
Leveraging the advantage of knowing the classifier g is also not trivial. For instance, instead of estimating∇δL(f(x+ δ), t)
directly, we can use the chain-rule and estimate∇δh(x+ δ), as

∇δL(f(x+ δ), t) =
dL(f(x+ δ), t)

dh(x+ δ)
· dh(x+ δ)

dδ
. (5)

Estimating this is still expensive, if not more than the original problem since the dimension d in δ and h(x+ δ) in the case of
Imagenet classifiers is often around or more than 224× 224, prohibiting us from effectively estimate the Jacobian gradient.

4. Proxy Approximation Quality
In this section, we first quantitatively validate that the the proposed local proxy outperforms the original version by Tseng

et al. [10]. Then, we show that the proposed proxy accurately approximates the output of the hardware ISPs.

Effectiveness of Local Proxy. We compare the success rate of the untargeted camera attack between the our proposed local
proxy ĥ and the original version h̃ from Tseng et al. [10] for the Movidius Myriad 2 and the ARM Mali C71 ISP in Figure 3.
We observe that our model ĥ consistently outperforms the original version, with more than 12% success rate for every ε.

Approximation Quality. In Figure 4 we plot the cumulative distribution of the absolute confidence difference between the
proxy pipeline and physical pipeline. This shows that the proposed local proxy function is able to approximate the hardware
ISP well.

3



Movidius Myriad 2 ISP ARM Mali C71 ISP

Su
cc

es
s R

at
e

Figure 3: We show and compare the success rate of fooling a physical ISP by using δ predicted by h̃, ĥ.

Figure 4: We show here that our local proxies accurately approximate the real physical ISPs. We calculate the absolute difference between
the predicted confidence values from the physical and proxy pipeline for each image and plot their cumulative distribution. The plot shows
that up to 90% of the images have lower than 0.1 absolute confidence difference.

5. Additional Experimental Results
5.1. Physical ISP Attack

We evaluate the targeted success rate for each individual ISP. The targeted success rate measures if an attack pattern
changes the targeted pipeline’s prediction to the target class while leaving other camera pipelines unaffected (class prediction
does not change and the confidence difference between the original and adversarial RAW is below 0.15). It can be observed
that for the hardware ISP, our attack reliably achieves more than 87% targeted success rate. For the differentiable ISPs, the
targeted success rate is up to 91%.

Targeted ISPs Movidius Myriad 2 ARM Mali C71 Bilateral Filter ISP Demosaicing ISP
Targeted Success Rate 87.6% 88.9% 91.4% 92.1%

Table 1: Targeted success rate for each individual ISP.

5.2. Physical Optics Attack

Untargeted Camera Attack. We report the success and transfer rate for each individual optics in the case of untargeted
optics attack in Table 2. We observe that the transfer rate for untargeted optics attacks is high. The attacks on Fujinon
CF12.5HA-1, for example, have a transfer rate up to 41.4% when deployed to the Cooke Triplet.

Targeted Optics
Deployed Optics

Fujinon CF12.5HA-1 Cooke Triplet

Fujinon CF12.5HA-1 96.7% 41.4%‖53.7%
Cooke Triplet 34.3%‖46.1% 95.9%

Table 2: Success and transfer rate for the untargeted physical optics attack.
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Figure 5: Visualization of attacks with and without camera modelling. The perturbation is more structured and visible when we take the
camera transformation into account..

Effectiveness of Camera Modelling in Physical Adversarial Attack. As we stated in the paper, current approaches for
adversarial attacks neglect the existence of the transformation happening in the camera, assuming that they preserve the
adversarial pattern. We show here that this assumption is flawed by comparing the attack success rate when we include
and do not include this transformation, using the Cooke Triplet optics and ARM C71 Mali ISP. When assuming that this
transformation preserves the adversarial pattern, the success rate is 0.1% when ε = 0.08. In contrast, when this transformation
is considered, the attack achieves up to 95% for the same ε. We visualize and compare the perturbations in Figure 5, where
it can be observed that although both use the same optimization algorithm and perturbation bound ε = 0.08, the perturbation
when we model the transformation in the camera is more visible and structured.

Targeted Optics Attack. We show the targeted success rate for the targeted optics attack in Table 3. Our attack is able to
achieve more than 82% targeted success rate on both Fujinon CF12.5HA-1 and Cooke Triplet.

Targeted Optics Fujinon CF12.5HA-1 Cooke Triplet
Targeted Success Rate 82.6% 83.9%

Table 3: Targeted success rate for each individual optics.

6. Additional Visualization Results
6.1. Targeted ISP Attacks

In Figure 6,7,8,9,10,11, we show visualizations for the targeted ISP attacks. Each figure shows attacks on different ISPs,
using the same original RAW image. Interestingly, despite having the same adversarial RAW image as input, each ISP
produces distinct RGB perturbations. Although the RGB perturbations seem to contain similar macro structures, only the
one from the targeted ISP becomes adversarial to the classifier, while others pose no threat at all. Since the untargeted RGB
perturbations do not change the prediction, this means that they are considered as noise by some hidden projections in the
classifier. As such, the structured noise perturbations are tailored to a specific ISP.

6.2. Targeted Optics Attack

We provide additional examples of the targeted optics attack in Figure 12. We find that the perturbations show distinctive
frequency-dependent patterns for each optical system. We interpret this attack as one that efficiently exploits the frequency
bands specific to the optical transfer functions of the employed optics.
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Prediction: Jap. Spaniel 89% Prediction: Jap. Spaniel 92% Prediction: Jap. Spaniel 95%Groundtruth: Jap. Spaniel 
 Target: Missile Prediction: Missile 95%
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Figure 6: Visualization of the adversarial images and perturbations for the targeted ISP attack. Each pair of rows (top to bottom) shows
the attack on the Movidius Myriad 2, ARM Mali C71 and Bilateral Filter ISP respectively. In each targeted ISP attack, we show in the first
column the adversarial RAW (top) and perturbations (bottom). The next four columns show the associated RGB images and perturbations
from the ISPs. The RGB perturbation is visualized by subtracting the ISP output of adversarial RAW from that of the unattacked output.
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Figure 7: Addtional visualizations of the targeted ISP attack.
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Figure 8: Addtional visualizations of the targeted ISP attack.
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Figure 9: Addtional visualization for targeted ISP attack.
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Figure 10: Addtional visualization for targeted ISP attack.
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Figure 11: Addtional visualization for targeted ISP attack.
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Display Image Fujinon CF12.5HA-1 Cooke Triplet
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Display Image Fujinon CF12.5HA-1 Cooke Triplet
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Figure 12: Visualization (a),(b),(c),(d) of the targeted optics attack on the Fujinon CF12.5HA-1 and Cooke Triplet optics. For each attack,
we show the displayed adversarial and post-processed images (top row). In the bottom row, we visualize (from left to right) the additive
perturbations on the display image and its zoomed in 150× 150 top-left and bottom right region.
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