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In this Supplemental Document, we present additional details and analysis. Specifically, we provide
» Additional prototype details of diffractive optical elements and stereo cameras.
* Details on the experimental real-time capture system.
* Optimization details of designing a DOE phase map for a specific illumination pattern.
» Examples of the stereo NIR dataset.

* Calibration details including geometric parameters of the stereo cameras and the illumination module and radiometric
calibration of the DOE-laser module.

* Details on self-supervised finetuning and the proposed network architecture.
* Analysis on the DOE initialization in the proposed end-to-end training.

* Insights from Polka Lines illuminations.

¢ Additional results on environment-specific end-to-end optimization.

* Comparison to existing illumination patterns and conventional DOE designs.

1. Additional Prototype Details
1.1. Diffractive Optical Element

We use a conventional photolithography process from HoloOr to prototype three learned DOEs for different ambient light
powers. As we use the four-step lithography that produces 16 discrete height levels, we discretize the continuous height
maps of the learned DOEs into discrete versions. Figure [3| shows the simulated illumination pattern before and after the
discretization, demonstrating that the overall structure in the pattern remains the same except for the amplified zeroth-order
diffraction. This zeroth-order diffraction pattern is also observed in the illumination image of the fabricated DOEs shown in
the main paper which is partially handled by our self-supervised finetuning. We believe that these fabrication inaccuracies
could be mitigated in a commercial photolithography process, e.g., the Intel RealSense D415 pattern does not exhibit a
zeroth-order inaccuracy. We also note that our learned DOE design may be difficult to fabricate on a large scale due to
its specialized structure. To remedy this, fabrication constraints could be incorporated into the proposed end-to-end design
method in the future.

1.2. Stereo Cameras

While the exact stereo configuration is a system design choice, we chose the parameters of our system to match that of
the Intel RealSense D415. Specifically, we chose the camera focal lengths, sensor specs, and the baseline to match the ones
of the Intel RealSense D415 camera. Indeed, we originally planned to replace only their illumination DOE with our new
DOE designs, however, this was not practical because of their proprietary system design. We also considered placing our



diffuse low-reflectance bag specular stop sign colorchecker transparent bubble wrap

Figure 1. We demonstrate a real-time capture system from our Polka Lines prototype, reconstructing depth for several challenging objects
in motion. We refer readers to the Supplemental Video.
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Figure 2. We measure the per-frame processing time for each stage of the live-capture program.

illumination module next to the Intel RealSense D415’s stereo camera to enable effective active-stereo imaging using their
highly-optimized camera. Unfortunately, this was also infeasible due to the required position of the illumination in between
the stereo cameras which is unfortunately occupied by the Intel projector. Due to these challenges, we chose to build our own
academic prototype with affordable elements.

2. Real-time Capture Demonstration

We developed a live-capture system that acquires stereo images and estimates a disparity map at 10 frames per second
(FPS) as shown in Figure|[I] Target objects are a low-reflectance diffuse bag, a highly-specular red stop sign, a ColorChecker,
and a transparent bubble wrap. Note that even though we did not include such diverse reflectance in the training dataset, our
reconstruction network together with the learned illumination enables effective reconstruction of the objects. We refer to the
Supplemental Video for the video results. It is also worth to note that we observe temporal consistency between the estimated
depth maps at different frames without employing any temporal smoothing loss in the reconstruction network.

We use a desktop computer with an NVIDIA GeForce RTX 3080 and the input 12-bit images are fed to our reconstruction
network. Our capture program is written in Python with multi-threaded programming for simultaneously capturing images
and reconstructing a depth map. Specifically, the program consists of capturing the stereo images using the camera APIs,
rectifying the images with the calibration data, and estimating a disparity map using our reconstruction network. To quantify
the latency of our live-capture program, we measure the elapsed time for each stage by averaging over 50 frames. Figure 2]
shows the latency for each stage.

Note that the current capture software is not optimized. C++ implementation instead of the high-level Python API could
provide speedup. We also expect that employing recent inference-dedicated network libraries such as NVIDIA TensorRT can
further reduce the inference time of the neural network.

3. DOE Phase Design

In addition to solving for optimal illumination patterns, the proposed differentiable image formation model can be repur-
posed for designing DOEs that produce specific target illumination patterns. We formulate this as an optimization problem
of minimizing the difference between the target pattern image Iiaree and the simulated illumination image Ijjjun, for a given
phase map of the DOE ¢ as

minid)rnize MSE (Zittum (0) , Ltarget) (1)
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Figure 3. We discretize the optimized DOE height into 16 levels for photolithography fabrication. In simulation, the structure of the
illumination image is maintained after the discretization process, except for the amplified zeroth-order diffraction.
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Figure 4. Our differentiable image formation can be used for designing a DOE that produces a desired target illumination pattern. Our
method outperforms the commonly employed iterative Fourier transform method [[1] and possesses additional advantages through design
flexibility on the image formation and the loss function.

where MSE is the mean squared error. As computing the illumination image jum (¢) consists of differentiable operations
based on our image formation model, we can solve this problem by relying on automatic differentiation using the Adam
optimizer. Figure [4] shows target images and our reconstructions. We compare our method to the state-of-the-art iterative
Fourier transform method [1]] that indirectly solves the optimization problem. Our method not only outperforms this baseline
in terms of reconstruction accuracy but also provides design flexibility by changing the image formation model and the loss
function on demand.

4. NIR-stereo Dataset

Our method uses two NIR-stereo datasets, one for training in simulation and the other for finetuning the experimental
prototype. For the synthetic training, we modify the RGB-stereo dataset [3|] as described in the main paper, resulting in
21718 training images and 110 testing images. For finetuning, we capture 76 real-world stereo images of indoor scenes.
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Figure 5. Examples of our NIR-stereo datasets for synthetic training and finetuning.

Figure[5]shows a sample from each dataset with varying reflectance and geometric complexity.

5. Calibration
5.1. Geometric Calibration

We calibrate our experimental prototype for efficient stereo matching in the rectified domain. We capture a checkerboard
at different positions and obtain the camera intrinsics, the distortion coefficients, and the extrinsic between the stereo cameras.
The average reprojection error was 0.6 pixels. For each input stereo frame, we rectify the stereo images using the calibration
data and feed them to the reconstruction network.

Then, we obtain the illumination images of the fabricated DOEs. For each DOE, we illuminate a white wall at a distance
of 50cm from the camera, while ensuring that the intensity of the illumination pattern is in the observable dynamic range
of the stereo cameras. We capture the stereo images of the wall with and without the structured-light illumination. Using
the no-illumination images as background, we compute the illumination images at the stereo viewpoints. Undistortion and
rectification are applied to the illumination images. This procedure provides a high-quality illumination image at the rectified
illumination viewpoint which can be used for the reconstruction network.

5.2. Radiometric Calibration

In order to ensure a fair comparison between different illumination patterns, we use the same illumination power across
different patterns. In synthetic experiments, this is achieved by using the same parameter value of the laser power 3. For the
Intel RealSense D415 pattern, we obtain the power-normalized illumination pattern to apply the laser power . To this end,
we estimate the optimal illumination power S that reconstructs the captured Intel RealSense D415 pattern as

mir}ai%lize MSE (Zittum (¢ B) s Ltarget)- @

Once the optimization converges, we normalize the D415 illumination image with the estimated 3 and use the same illumi-
nation power for its illumination image as the parameter value used for our end-to-end learning.

For real-world experiments, we use an integrating sphere of 12 mm input aperture (Thorlabs S142C) to measure the
average illumination power of the Intel RealSense D415 illumination and our illumination. Our pattern exhibits higher peak
power (not average power) than the Intel pattern, because the Intel RealSense D415 pattern has larger Gaussian-shaped dots
while our pattern consists of smaller dots. Figure[7]shows the zoom-ins of Figure 11 in the main paper. Hence, for the same
average power, our pattern features higher peak power with sparser dots.
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Figure 6. For finetuning, we extend the network architecture. We extract features for the left/right stereo images and the illumination
image using the convolutional feature encoders. For each view, two cost volumes are constructed in narrow and wide baselines, fused
into a multi-baseline cost volume. We estimate a disparity map for this cost-volume at a low spatial resolution which is upsampled to a
original-resolution disparity using an edge-aware convolutional upsampler. The estimated disparity maps of the left and right views are
then used for estimating validity maps that account for occlusion using a convolutional validator. The final disparity maps are obtained by
removing the invalid region from the disparity estimates.
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Figure 7. Radiometric comparison. Our pattern consists of small slanted dots with varying intensities while the Intel RealSense D415
pattern projects larger regular dots, hence average intensity is similar.

6. Reconstruction
6.1. Self-supervised Finetuning

To handle the domain gap between the simulation and the real-world inputs, we apply self-supervised finetuning for our
reconstruction network. Figure [f]shows the overview of the trinocular reconstruction network for finetuning. There are two
major differences to the network used in simulation. First, we estimate disparity maps for both left and right views. This is
implemented by computing the right view disparity in the same way as computing the left view disparity which is described
in the main paper. Second, we introduce a validation network that estimates validity maps of the estimated disparity. Inspired
by left-right consistency approaches [2]], we warp the estimated left/right disparity maps to the other view and compute the
difference with the original disparity maps. This difference and the stereo images are fed to the validation network as inputs.
In summary, the changes of the network architecture and the loss function enables effective handling of challenging regions
such as large occlusion and strong specularity which are often observed in the real-world inputs. Our finetuning is specifically



Feature Extractor

Name Type Channels
input camera or illumination image 1
down 3% (conv-k5-s2-d2-p2) 32
res 6 (res-k3-s1-d1-p1-BN-LRelu) 32
conv conv-k3-s1-d1-pl 32
output feature 32
Cost-Volume Filter
input 3D cost volume 32
conv3 4x(conv3-k3-s1-d1-pl-BN-LRelu) 32
conv3 conv3-k3-s1-d1-pl 1
output filtered 3D cost volume 1
Convolutional Upsampler
input  high-res. image and bilinear-upsampled disparity 32
conv conv-k3-s1-d1-p1-BN-LRelu 32
resl conv-k3-s1-d1-pl-BN-LRelu 32
res2 conv-k3-s1-d2-pl-BN-LRelu 32
res3 conv-k3-s1-d4-pl-BN-LRelu 32
res4 conv-k3-s1-d8-p1-BN-LRelu 32
res5 conv-k3-s1-d1-p1-BN-LRelu 32
res6 conv-k3-s1-d1-pl-BN-LRelu 32
conv conv-k3-s1-d1-p1-Relu 1
output high res. disparity 1
Validation Network for Finetuning
input image and warped image from the other view 2
conv conv-k3-s1-d1-pl1-BN 32
res 5x(res-k3-s1-d1-p1-BN-LRelu) 32
conv conv3-k3-s1-d1-p1-Sigmoid 1
output invalid mask from zero to one 1

Table 1. Network architectures. conv/res-k(x)-s(y)-d(z)-p(g) describes a convolution or residual layer with a kernel of x x x window, stride
y, dilation rate z, and padding g.

formulated as the following optimization problem,

mineirglize Lo+ 7Ly + KLy,

L, = MSE (J'R & VLR (), JUR (6) © VER (9))

est est est

L, = CE (VER (9),1),

est

La=MSE (VD (9)) ,

3)

where VLR are the estimated left/right validity maps and DR are the corresponding disparity maps. £,, computes the mean

squared error between the input and the estimated sensor images via validity-weighted warping: JL& = warp (J®", DIR).
L, is the cross-entropy loss on the validity maps to avoid the trivial solution of making the validity as zero. L is the disparity
smoothness loss to cope with real-world challenges in correspondence matching. 7 and « are the balancing weights set as
0.01 and 0.0001. The parameters of the reconstruction network 6 are finetuned, while the validation network parameters 9
is trained from scratch. We train over 5 epochs during finetuning. For visualizations, we threshold with a validity map to

handle large occlusion.

6.2. Network Details

We provide network architectures in Table [T]including feature extractor, cost-volume filter, convolutional upsampler, and
validation network for finetuning.
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Figure 8. Optimized illumination and depth reconstruction for different noise levels. When the noise is moderate, the illumination pattern

becomes dense with varying-intensity Polka Lines to provide dense correspondence cue. In contrast, severe noise, e.g., due to strong
ambient illumination, makes the illumination pattern sparse with high intensities to stand out of the noise floor.
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Figure 9. Our method enables us to design illumination patterns tailored for indoor, outdoor, or general environments.
7. Analysis

7.1. DOE Initialization and Evaluation

In our end-to-end training, we initialize DOE phase from a uniform random distribution from zero to 2. We also tested
two different DOE initializations, an all-zero phase initialization and a 2D diffraction grating phase initialization as seen in
Figure[T1] All initializations result in similar Polka Lines patterns as shown in Figure

7.2. Polka Lines Illumination

Our learned Polka Lines illumination features high density slanted dotted-line structures, each of which consists of small-
size dots. We note that this pattern has not been hand-engineered but was computationally found. These features are intu-
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Figure 10. We test three different DOE initialization for our end-to-end training. The learned illumination images converge to similar
Polka Lines patterns after completing training procedure.
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Figure 11. Our differentiable image formation can be applied to arbitrary DOE height maps, including random DOE height maps (left)
and the 2D diffraction grating (middle), enabling the end-to-end design of illumination pattern for active-stereo systems.

itively helpful for active stereo imaging and some of them can be found in existing illumination patterns such as the Heptagon
projector pattern in the Intel RealSense D415. Our end-to-end optimization method provides meaningful insights on how the
trade-off between these properties should be maintained in the form of a DOE designed for a specific environment and
imaging configuration.

7.3. Environment-specific Illlumination Design

Our method facilitates incorporating system and environmental parameters in the image formation model, allowing us to
design an illumination pattern tailored to the given scene. Specifically, we evaluate the learned patterns in terms of ambient
light and noise level.

Measurement noise is critical for robust depth estimation and becomes strong in challenging environments, e.g., low-
reflectance scene objects, strong ambient illumination, and long-range objects. Figure |8 shows the optimized illumination
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Figure 12. We compare the Intel RealSense D415 pattern, ideal random pattern, and our learned Polka Lines pattern in simulation. Our
pattern outperforms the two hand-crafted illumination in all tested metrics.

images and corresponding depth reconstructions for the moderate and the extreme noise levels. The standard deviations of the
Gaussian noise are 0.02 and 0.6 respectively. Extreme noise makes the illumination pattern sparse with high-intensity dots.
In the moderate noise case, we obtain dense varying-intensity Polka Lines in the illumination image, providing high-quality
depth reconstruction.

We also test varying ambient light power and laser power to simulate indoor and outdoor conditions by setting the parame-
ter values of the ambient light power and the laser power as follows: indoor (o« = 0.0, 8 = 1.5), outdoor (o = 0.5, 5 = 0.2),
and general (« € [0,0.5], 8 € [0.2,1.5]). We empirically chose the values of o and 3 by capturing the relative intensity dif-
ferences of laser illumination and ambient light indoors and outside. We train a DOE and a reconstruction network for each
of the configurations. Figure [9] shows the optimized illumination patterns and their performance tested on both indoor and
outdoor environments. We learn dense Polka Lines in the indoor scenes to provide many features for correspondence match-
ing. For the outdoor scenes, we obtain sparse high-intensity Polka Lines, providing robustness against the strong ambient
light and relatively weak laser power. When training on general environments, we learn Polka Lines with varying intensities
with moderate density.

We fabricated and placed these three DOEs for indoor, outdoor, and general conditions by mounting them on a manual
rotation stage. In the future, we envision using mechanically interchangeable DOE configurations or multiple projectors to
adapt to the environment. Overcoming high manufacturing cost of multiple illumination modules and reducing their form
factor are exciting steps for future work.

7.4. Illumination Patterns of Conventional DOEs

Our image formation model for active stereo involves computing the illumination image for a given DOE profile. As a
sanity check on our image formation model, we compute the illumination patterns for two conventional DOE designs: random
height DOE and 2D diffraction grating. In theory, their illumination patterns are random dots and regular grid patterns with
decaying intensity profile as the diffraction order increases. Figure [T1]shows that our simulated illumination images contain
these characteristics.

7.5. Comparison with Other Illumination Patterns

We compare our learned Polka Lines pattern to the Intel RealSense D415 pattern and the ideal random-dots pattern
in simulation. Figure shows that the Intel RealSense D415 pattern contains sparse and low highest intensity feature
points with repeated structure, leading to reconstruction artifacts. It is worth noting that there is a disparity bias in the
estimates of the Intel RealSense D415 pattern. The bias is at around 10 px which corresponds to the distance between the
two nearest dot features. Based on this observation, we speculate that this failure may come from the characteristics of the
two-scale Intel RealSense D415 features. That is, it has high-frequency 10 px-width dot features and also low-frequency
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Figure 13. Our learned illumination pattern with varying-intensity dots outperforms passive stereo and the conventional fixed-intensity
pattern (Intel RealSense D415 sensor) for high dynamic range of incident light. Blue arrows indicate estimation artifacts. We capture a
V-shaped reflectance target (x-rite ColorChecker Pro Photo Kit) of which a scanline analysis reveals that the accurate reconstruction of the
shape only by our Polka Lines pattern.

60 px-width heptagon features consisting of multiple dots. This could cause ambiguity when using the high-frequency or
the low-frequency patterns used for correspondence matching, resulting in the disparity bias. Specifically, we observe that
10 px of disparity bias happens as the reconstruction network uses the high-frequency dots as matching features instead of
the low-frequency components. Thus, this fundamental ambiguity in the Intel RealSense D415 pattern often leads to biased
estimates. The ideal random-dot pattern provides high-quality depth reconstruction on average, however, reconstruction
quality degrades under high ambient light conditions due to the scattered light energy by the random phase distribution. In
contrast, our Polka Lines pattern provides accurate reconstructions with dense features and varying-intensity dots that we
learn from end-to-end optimization with the goal of accurate depth reconstruction.

Figure T3] shows the real-world comparison of the passive stereo, the Intel RealSense D415 pattern, and our Polka Lines
pattern. Our Polka Lines design provides accurate reconstruction on feature-less objects. For additional analysis of the
illumination intensity, refer to Figure [7] validating that our pattern provides higher peak power while maintaining average
power.
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