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In this supplemental document, we provide additional detail on the image formation model, network architecture of
the proposed exposure control method, and detailed training instructions to learn the proposed method. We also provide
additional supplementary results at the end of this document.

1. Additional Details on the Image Formation Model
In the following, we provide detailed derivations of the noise model employed for the training in simulation and synthetic

assessment, and we review multi-capture HDR image reconstruction.

1.1. Noise Model

We model the number of photoelectrons yp(φ · t) and dark currents electrons yd(µd) for a given pixel with Poisson
distributions, that is

yp(φ · t)∼P(φ · t), yd(µd)∼P(µd).

The average number of electrons in the absence of light µd grows linearly with the exposure time

µd = µ0 + µI · t.

We ignore the effect of temperature on µd.
Due to the properties of the Poisson distribution the variance equals the mean value i.e., the standard deviations are as

follows.
σ(yp(φ · t)) =

√
φ · t, σ(yd(µd)) =

√
µ0 + µI · t.

The pre- and post-amplification noises, are modeled as zero-mean gaussian variables.

npre∼N (0, σ2
pre), npost∼N (0, σ2

post).

We note that the constants µd, σpre and σpost need to be calibrated.
The above sensor noise and the ADC’s quantization noise affect the overall signal-to-noise ratio (SNR) and the dynamic

range (DR) of the captured image.

1.2. SNR and Dynamic Range

Noise Variance. The total variance of the noise for unsaturated pixels of a single exposure can be derived from the model
above. The unsaturated pixel value can be written as

Iunsat = g · (yp(φ · t) + yd(µd) + npre) + npost

and its variance
Vunsat = g2 ·

(
(φ+ µI) · t+ µ0 + σ2

pre

)
+ σ2

post + σ2
q . (1)

The square error σ2
q accounts here for the quantization error. We set it to the variance of the uniform probability distribution

on [0, 1], i.e. σ2
q = 1/12.
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Signal-to-Noise Ratio. The squared signal-to-noise ratio (SNR) for a pixel receiving the radiant power φ can be derived as
follows.

SNR(φ)2 =
φ2 · t2 · δIsensor<Mwhite

(φ+ µI) · t+ µ0 + σ2
pre + (σ2

post + σ2
q )/g

2
.

The term δIsensor<Mwhite is equal to 1 whenever the pixel value is below the maximum possible value and 0 otherwise. This term
expresses the fact that the information is lost when a pixel is saturated at maximum value. For most sensors, the following is
true for all ISO settings

Mwhite < g ·Mwell,

making Mwhite the deciding quantity for saturation. We could argue (as in [6]) that this loss of information may happen at
lower values too, because of saturation at Mwell followed by a negative noise npost. We ignore this possibility here.

Dynamic Range. The dynamic range DR expressed in dB, is limited by the saturation at the higher end and by noise at the
lower end. Here we consider the image sensor noise and ignore the optical noise which is acceptable for an LDR single-shot
camera. Let φsat be the irradiance such that, on average, the pixel value just reaches Mwhite i.e.,

g · (φsat · t+ µ0 + µI · t) =Mwhite,

and let φmin be the irradiance such that the SNR equals 1. Solving for φ in the squared SNR expression we get:

φmin =
(
1 +
√
1 + 4t · v

)
/(2t),

with
v = µI + (µ0 + σ2

pre +
(
σ2

post + σ2
q

)
· g−2)/t.

The dynamic range DR expressed in dB is defined as

DR = 20 · log10
(
φsat

φmin

)
.

1.3. Multi-Capture HDR Imaging

Next, we review multi-capture HDR image reconstruction. We note that multi-capture HDR imaging fails in dynamic
scenes, introducing ghosting or SNR drops in the HDR transition regions [12]. In our work, we explore single-shot imaging
with a learned adaptive exposure for dynamic scenes, departing from multi-capture methods that are fundamentally limited
in dynamic scenes. A large body of HDR imaging methods [9, 1, 12, 4, 10, 7] has been devised in order to overcome
the limitation of low dynamic range image sensors. Existing methods exceed the dynamic range of a single capture by
acquiring multiple measurements using spatial or temporal multiplexing strategies. The most common approach is temporal
multiplexing using exposure bracketing. In this widely popular approach, an LDR image sensor is employed to take several
captures of the same scene with different exposures and then combine them to make an HDR image. Each of the LDR images
covers a subset of the dynamic range of the scene, such that taken together the set of LDR images covers the full dynamic
range of the scene. Numerous methods have been devised for merging the set of LDR images in order to produce an HDR
image [11]. Existing methods [1, 12] typically express the reconstruction as a weighted average of the LDR images.

Ihdr ∝
n∑

i=1

βi · Ii,

where Ii, i = 1, . . . , n is a set of linear light LDR images, and βi are corresponding weighting and scaling factors. In
particular βi = 0 whenever the corresponding pixel value Ii is saturated. All existing multi-shot HDR methods have in
common that they fail for dynamic scenes, resulting in ghosting artefacts or SNR drops in the HDR transition regions. While
recent methods have aimed to employ computational hallucination methods [2], relying on a single exposure, or de-ghosting
approaches [3], the compute complexity prohibits such methods for real-time robotic applications, e.g., autonomous vehicles,
that require real-time processing.

2. Neural Exposure Control Architecture Details
In this section, we provide additional details of the proposed neural exposure control method. We refer to the main draft

for an overview of our exposure control approach.
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Table 1: Global Image Feature Branch Architecture

Layer Operation
of filters
Number

size
Kernel

Stride
shape

Output

0 Input tensor - - - [256, 59]
1 1D Convolution 128 4 4 [64, 128]
2 1D Convolution 256 4 4 [16, 256]
3 1D Convolution 512 4 4 [4, 512]
4 Dense layer 1024 - - [1024]
5 Dense layer 16 - - [16]
6 Dense layer 1 - - [1]

2.1. Global Image Feature Branch

The input to the global image feature branch is a tensor of shape [256, 59] that represents 59 histograms, each with 256
bins, stacked together. These histograms are computed at three different scales as described in Section 4.1 of the main paper.
The coarsest scale is the whole image which yields one histogram. At the intermediate scale, the image is divided up into
3 by 3 sub-images, yielding 9 histograms. At the finest scale, the image is divided up into 7 by 7 sub-images, yielding 49
histograms.

After computation and stacking of the histograms, the global image feature branch starts with a one-dimensional CNN.
The first 3 layers are 1D convolutions where the convolution operates along the histograms. The width of the layers increases
by doubling every layer, starting at 128. The convolution kernel size and the stride are equal to 4. Three dense layers follow,
with a decreasing number of units, 1024 units for Layer 4, 16 units for Layer 5 and a single unit for Layer 6 which is the last
layer. The activation function is ReLU for each layer except the last one that as the custom activation function (4) given in the
main paper page 4 in Section 4.1. Table 1 describes the linear architecture of the global image feature branch and describes
the hyperparameters of each layer.

2.2. Semantic Feature Branch

The input of the semantic feature branch is the activation of the last layer of the block conv2 of ResNet. Here we reuse
an intermediate layer of the feature extractor used by the object detector (Faster-RCNN [13, 14]) at the current frame. More
precisely, we use a variant of ResNet (ResNet 18) [8] as a feature extractor. This variant allows us to run the whole pipeline
at 30 frames per second on a Nvidia GTX 1070 GPU.

At the beginning of the semantic feature branch, the ResNet conv2 feature map is first cropped. The first 120 rows only are
kept. This makes for a convenient shape when pooling at different scales later. We also note that no important information
is lost in the process given that the bottom of the image is mostly occupied by the hood of the car. After that cropping, the
feature map undergoes a channel compression from 64 to 26 by using a 1x1 convolution, producing the compressed feature
map (CFM). The channels of the CFM are pooled at 3 different scales. The first two channels are max pooled with a stride
of 10 along rows and 20 along columns, which amounts to dividing up the feature map along rows and columns into a 12
by 12 array of sub tensors and computing the maximum of each of them channel wise. The next 8 channels of the CFM are
max pooled with a stride of 20 along rows and 40 along columns, which amounts to dividing up the feature map into a 6 by 6
array of sub tensors and computing the maximum of each of them channel wise. The last 16 channels of the CFM are average
pooled with a stride of 40 along rows and 80 along columns, which amounts to dividing up the feature map into a 3 by 3
array of sub tensors and computing the average of each of them channel wise. A fourth pooling is performed image wide on
the cropped (64-channel) feature map, i.e. each of the 64 channels is averaged along the two spatial dimensions. Each of the
tensors resulting from those 4 pooling operations are flattened, yielding vectors of lengths 288, 288, 144, and 64 respectively.
They are concatenated together to a 784-long vector. These 784 units are then densely connected to a 16-unit layer which
is the output of the semantic feature branch. Table 2 details the directed acyclic graph architecture of the semantic feature
branch by specifying the input of each layer, as well as their hyperparameters.

2.3. Hybrid Model

The hybrid model combines both the global image feature branch and the semantic feature branch. The output of Layer 5
of the global image feature branch is summed to the output of the second fully connected layer (FC 2) of the semantic feature
branch, after a rescaling. That is, the output of FC 2 is rescaled by a constant factor that we set to 0.01. This rescaling allows
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Table 2: Semantic Feature Branch Architecture

Layer Input Operation
of filters
Number

size
Kernel

Stride
shape

Output

ResNet conv2 - Input tensor - - - [150, 240, 64]

feature map
Cropped

ResNet conv2 Crop rows [0:120] - - - [120, 240, 64]

feature map (CFM)
Compressed

feature map
Cropped

Convolution 26 1 1 [120, 240, 26]

Max pool 1 CFM channels [0:2] Max pool - 10 x 20 [10, 20] [12, 12, 2]
Max pool 2 CFM channels [2:10] Max pool - 20 x 40 [20, 40] [6, 6, 8]
Avg pool 1 CFM channels [10:26] Average pool - 40 x 80 [40, 80] [3, 3, 16]
Avg pool 2 ResNet conv2 cropped Average pool - - - [1, 1, 64]

Pool out

Avg pool 2
Avg pool 1
Max pool 2
Max pool 1

Flatten + concatenate - - - [784]

FC 1 Pool out Dense layer 1024 - - [1024]
FC 2 FC 1 Dense layer 16 - - [16]

the signal coming from both branches to be on the same order of magnitude.

2.4. Image Signal Processing (ISP) Pipeline

The raw image acquired by the camera is processed by a software signal image processor (ISP). For convenient end-to-
end training it is entirely written with differentiable TensorFlow operations. Our ISP consists of a linear pipeline comprising
processing blocks all commonly found in commercial ISPs. Specifically, we employ a demosaicer, a downsampler, a contrast
enhancer, a low frequency denoiser, a sharpener and gamma correction. Some of these processing blocks use several param-
eters that are trained jointly with the other trainable variables (auto exposure, feature extractor and object detector). We note
that the proposed method is orthogonal to the ISP employed, and, indeed, supports arbitrary image processing pipelines, as
long as those are differentiable.

3. Training
3.1. HDR Training Dataset

The dataset that we use for training and evaluation has been captured with a camera equipped with the Sony IMX490 HDR
sensor with fixed exposure settings. The whole dataset comprises 500 sequences of 5 successive HDR frames for a total of
2500 HDR frames. We select 400 sequences for the training data and use the 100 sequences left for test. From each of the
400 sequences we make 4 pairs of sucessive frames for a total of 1600 pairs, each of them being a training examples. We do
the same for the test set which results in a total of 400 test examples.

3.2. LDR Image Capture Simulation

Noise Parameterization for Calibration and Capture Simulation. For the purpose of calibration and simulation we
combine µI , µ0 and σpre to a single term σ2

d, which we call the variance of the dark noise, as follows:

σ2
d = µI · t+ µ0 + σ2

pre.

We do this for two reasons. The first reason is that we consider the exposure time as being fixed in the training pipeline, i.e.
that the AE only adjusts the gain. This is an approximation which ignores that the camera gain setting K is bounded from
below by 1. This approximation overestimates the standard deviation of the noise in the case where K < 1 is simulated.
However, in the case of our target camera, the error induced by that approximation is bounded from above by 0.54 ·Mwhite,
such that we deem this approximation as acceptable in practice. The second reason for grouping these noise terms under σ2

d is
that we do the common approximation of replacing the Poisson distribution of dark currents electrons yd(µd) by a Gaussian
distribution, which allows to simulate all the dark noise created before amplification as a single Gaussian random variable
with a variance σ2

d which is the sum of σ2
pre and of the variance of yd(µd).
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For our target sensor (Sony IMX249) we also need to consider a row-wise amplifier noise that takes the form of horizontal
lines on the images. This allows us to break down the variance of the dark noise σ2

d into two terms: σ2
d = σ2

d, pix + σ2
d, line,

where σ2
d, line is the variance of the component of the dark noise that shows up as horizontal lines and σ2

d, pix the variance of
the component of the dark noise that is spatially uncorrelated.

Noise Calibration. Following the parametrization introduced in the paragraph above and in Section 1.1, we need to cal-
ibrate the following noise parameters: σd, pix, σd, line, σpost and g1. The parameter g1 is not a standard deviation but it
characterizes the camera shot noise. We recall that g1 is the gain from electrons to DN (digital numbers) at ISO 100 (i.e.,
when K = 1), such that, in the general case, the gain g can be written g = g1 ·K.

The signal independent noise can be calibrated from a set of dark frame captures (raw images) taken at various gains. The
variance of that noise can be written as K2 · g21 · σ2

d + σ2
post, such that a regression against K2 allows to estimate g21 · σ2

d and
σ2

post. In the case of our target camera we find out that σ2
post is negligible.

Then g21 · σ2
d, line is estimated using the dark frames averaged along the rows. From g21 · σ2

d and g21 · σ2
d, line we deduce

g21 · σ2
d, pix.

Once g21 · σ2
d, pix and g21 · σ2

d, line have been calibrated, the gain g1 is estimated from raw images of a set of pictures of a
color checker chart, taken at various gains under a roughly uniform illumination. The temperature of the illuminant is not of
importance in this process. The mean value of each patch pixel is estimated using a local polynomial estimator within the
pixel’s patch.

Noise Adaptation. We propose to train our model with images that contain noise distributed as the noise created by the
target camera (the one which our trained model will be used with). Our training dataset is composed of images taken with the
Sony IMX490. As such, they already contain noise produced by that sensor. We perform noise adaptation during training
from the source camera sensor (Sony IMX490) to the target camera sensor (Sony IMX249). This consists in adding just the
right amount of noise to the image such that after noise adaptation the noise contained in the image matches the distribution
of the noise of the target camera.

To do so we need to calibrate the noise distributions of both the source and target camera. We use the approach described
above for those calibration, even though the induced noise model is only an approximation here.

First we note that the images of the training set have been rescaled to match the resolution of the target camera. For a
given pixel in an (HDR) image of the training set, there is a mean number of photo-induced electrons µp, source. Suppose the
exact same scene was taken with the target camera from the exact same point of view. Then for the corresponding pixel in
the resulting raw image, there is a mean number of photo-induced electrons µp, target. We assume that µp, source = µp, target,
when the camera gain settings K = 1 for the target camera. This can be realized in practice by adjusting the aperture and
exposure time of the target camera given that the images of the training set have all been taken with the same fixed exposure
settings. Those adjustments are based on the aperture and exposure time of the source camera, as well as the pixel sizes and
the quantum efficiencies of both the source and target sensors. The assumption µp, source = µp, target implies that to simulate
a raw image for the target camera from the source camera we need to multiply the raw pixel value of the source camera by
g−1

source · g target. Here g source and g target are the quantities corresponding to the gain g introduced in Section 3 of the main
paper, for the source and target cameras respectively. However the resulting simulated raw image still does not include noise
adaptation for the dark noise.

To complete noise adaptation we need to match the dark noise of the target camera. Assuming σ2
d, source and σ2

d, target are
the variances of the dark noise for the source and the target cameras, we add a to the pixel values a Gaussian noise of variance

σ2
sim = g2target · (σ2

d, target − σ2
d, source).

This is only possible if σd, source < σd, target, which is the case for our chosen source and target sensors. For the special case
of a target sensor that includes an horizontal line noise as described above, we add both spatially uncorrelated and horizontal
line noises with corresponding variances computed as follows

σ2
sim, pix = g2target · (σ2

d, target − σ2
d, pix), σ2

sim, line = σ2
d, line.

Noise Augmentation. For the purpose of data augmentation we depart slightly from the way noise adaptation is outlined
above. We randomly vary the strength of the simulated dark noise around the strength targeted by noise adaptation. More
precisely, we compute σ2

sim as
σ2

sim = max(0, g2target · (σ2
d, target · kaug − σ2

d, source)),
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where log (kaug) is sampled uniformly in [log (0.25), log (4)] and set to the same value for all the pixels of a given image pair
example. In the case of a target sensor that includes an horizontal line noise, the noise augmentation is applied as follows.

σ2
sim, pix = g2target · (σ2

d, target · kaug − σ2
d, pix), σ2

sim, line = σ2
d, line · kaug.

3.3. Network Training

In this section, we provide the values of the training hyperparameters and the learning rate schedule, as well as additional
pretraining details.

Pretraining. The feature extractor has first been pretrained on ImageNet (ILSVRC2012). Then the object detector has been
pretrained jointly with the ISP on several public and proprietary automotive datasets. This trained joint model (ISP + object
detector) is reused as a starting point for the training of the two baselines and the two proposed models discussed in the main
document.

Learning Rate Schedule. For each of the two baselines and the two proposed models, the learning rate schedule is the
same. We train for 20,000 steps with a learning rate 0.0003, then an additional 20,000 steps with a learning rate 0.0001 and
finally 20,000 more steps with a learning rate 0.00003.

Training Hyperparameters. We use a batch size of 1. The localization and objectness loss weights of the RPN are 4 and
3, the localization and classification loss weights of the second stage are 4 and 2. The number of proposals from the RPN
is 300. We use L2 regularization for the weights of the autoexposure neural network only, with weight 0.001. We clip the
gradient when the norm is above 10 for the global image feature branch and for the hybrid model, and when the norm is
above 5 for the semantic image feature branch alone.

Two stage training for the hybrid model. The hybrid model is trained in two stages. We first train the semantic feature
branch alone. Next, we add the global image feature branch to the network to make the full hybrid model and we repeat the
training, following the same training procedure, including the same learning rate schedule.

4. Evaluation

4.1. Annotation Process

General requirements For training and evaluation street objects are grouped into 6 categories, namely, Car/Van/SUV,
Bus/Truck/Tram, Bike, Person, Traffic Sign, Traffic Lights. The Car/Van/SUV category is mainly for light to medium sized
vehicles, while Bus/Truck/Tram includes medium to heavy duty vehicles, such as, construction vehicles. The Bike category
includes bicycles, motorcycles and any other light transportation that have similar shape to a bicycle or motorcycle. Person
category includes pedestrians, cyclists and their full extent is annotated. For groups of people, every individual is annotated
separately. Traffic sign includes all standard traffic sign categories including electronic signs, and Traffic lights include lights
for vehicles, public transports, pedestrians and cyclists.

For all annotations only the visible extent of the objects are annotated as tightly as possible. Objects smaller than 5x5
pixels are ignored.

Annotation requirements for live evaluation data For live evaluation, captures were obtained by running two different
auto exposure algorithms on a stereo pair. The main challenge while annotating these LDR images is that some of the regions
can be either underexposed or overexposed. However, because we use two different algorithms, one of the two exposures are
likely to have these regions properly exposed.

To annotate these live evaluation data, we used a sequence of exposure pairs for annotation. The annotations for over and
underexposed images were done by first trying to adjust the brightness and contrast of the images to maximize object visi-
bility. If they are still not visible, the annotators chose the corresponding well exposed image and transferred the annotation
to the badly exposed image while making sure that the annotations are spatially and temporally consistent. Each annotated
sequence was checked for correctness by a quality controller and the annotations were adjusted as needed.
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Table 3: Synthetic comparison between a conventional HDR pipeline and LDR images auto-exposed with our proposed
method. The reported scores are the average precision at IoU 0.5 for each of the 6 classes and the mean across classes. See
text for additional details.

Method
Classes

All Bike Bus Car Person Traffic Traffic
Classes & Truck & Van Light Sign

CONVENTIONAL HDR DETECTION 10.6 3.4 12.9 29.9 8.8 2.1 6.4
PROPOSED LDR HYBRID NN (ours) 25.0 19.7 22.0 47.0 24.2 13.6 23.5

4.2. Synthetic Assessment

Comparison with Conventional HDR Detection Pipelines. In Table 3 we provide results of a synthetic comparison
between object detection on the output of an HDR ISP, the ARM Mali C71 which ingests an HDR RAW image, and the
proposed method using an LDR image exposed using the proposed neural exposure control. We run the commercial ARM
Mali C71 HDR ISP on the HDR raw images and run the pretrained object detector mentioned in Section 3.3 on the output of
that ISP. The detector was finetuned on the post-ISP images from this HDR ISP. For comparison, we simulate a LDR capture
from the previous frame HDR raw image and compute an exposure adjustment for the test frame (HDR raw image), from
which we simulate a LDR capture that we process with our trained pipeline (ISP + object detector). For this experiment, we
do not apply noise adaptation nor noise augmentation as the goal is to compare the use of HDR images with the use of LDR
images auto-exposed with our method, but not to validate the method for a specific target camera. It can be seen from Table 3
that the use of our joint model (trained AE + ISP + detector) outperforms the traditional pipeline consisting of an HDR sensor
followed by a conventional HDR ISP and an object detector trained on ISP-processed RGB images.

4.3. Experimental Assessment

Prototype Vehicle Setup. We provide additional information on the prototype vehicle in this section. Each of the two
cameras is free-running and takes input image streams from separate imagers mounted side-by-side on the windshield of a
vehicle, see Figure 1. Images are recorded with the object detector and each AE algorithm running live. All compared AE
methods and inference pipelines run in real-time on two separate machines, each equipped with a Nvidia GTX 1070 GPU.

Qualitative Validation. We provide additional qualitative results from the experimental side-by-side comparison experi-
ment. Those could not be included in the main paper because of space limitation and appear in Fig. 2 of this supplemental
document. Again it can be seen that in many instances, the proposed method is capable of carefully balancing the exposure
between dark and bright objects even in rapidly changing conditions. We also refer the reader to the companion videos
included as supplemental material.
Comparison with HDR exposure selection methods We implemented the method from [5]. For a fair comparison, we
use the same camera as with our live experiment. We captured data with their method and show an example in Fig. 3. We
see ghosting artifacts on vehicles and lane marking, validating the effectiveness of the proposed approach over conventional
HDR acquisition methods with exposure selection.
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Figure 2: Experimental prototype results of the proposed neural AE compared to the Average AE baseline method using the
real-time side-by-side prototype vehicle capture system shown in Fig. 1. The proposed method accurately balances exposure
between objects and adapts itself robustly to changing conditions.
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Figure 2: Experimental prototype results of the proposed neural AE compared to the Average AE baseline method using the
real-time side-by-side prototype vehicle capture system shown in Fig. 1. The proposed method accurately balances exposure
between objects and adapts itself robustly to changing conditions.
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HDR fusion (Gupta et al. [5]) Best LDR exposure

Figure 3: HDR exposure fusion results in severe ghosting artifacts in scenes with a lot of motion. This makes it impractical
for our automotive application.
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