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Table 1: ON Semiconductor AP0202AT ISP hyperparameters optimized at low gain, for human vision on an LCD, with their
operational ranges. Hyperparameters are discrete; they are relaxed to continuous values in the optimization process. (Color
Correction Matrix (CCM) coefficients are optimized only so that other ISP components be optimized with a correct CCM.
Final values were discarded.)

Aperture correction Global Tone Mapping
Hyperparameter Operational range Hyperparameter Operational range
ap gain (low gain) {0, . . . , 15} contrast gradient (low gain) {0, . . . , 255}
ap thresh (low gain) {0, . . . , 255} contrast intercept point (low gain) {0, . . . , 255}

Demosaicking Color Correction Matrix*
Hyperparameter Operational range Hyperparameter Operational range
demosaic (low gain) {0, . . . , 255} ccm 1 {0, . . . , 65535} but narrowed to {32743, . . . , 32943}

ccm 2 {0, . . . , 65535} but narrowed to {32685, . . . , 32885}
ccm 3 {0, . . . , 65535} but narrowed to {32644, . . . , 32844}
ccm 5 {0, . . . , 65535} but narrowed to {32720, . . . , 32920}
ccm 6 {0, . . . , 65535} but narrowed to {32678, . . . , 32878}
ccm 7 {0, . . . , 65535} but narrowed to {32699, . . . , 32899}

1. Overview
Sec. 2 details the sensor and ISP hyperparameters optimized in this work. In Sec. 2.1, we provide the non-HDR hyperpa-

rameters of the ON Semiconductor AP0202AT ISP optimized for perceptual IQ (Sec. 7.1 of the main document). In Sec. 2.2,
we describe the HDR AP0202AT ISP hyperparameters optimized in the second stage (also Sec. 7.1 of the main document).
In Sec. 2.3, we discuss the hyperparameters of the Sony IMX490 sensor and Renesas REN AC 085 HDR ISP emulator used
for the assessment of the proposed method.

In Sec. 3, we list the end-to-end loss functions used in this work to optimize for human viewing (Sec. 7.1 of the main
document) and for object detection and classification evaluation metrics (Sec. 7.2 of the main document). This includes the
novel “perceptual” image difference metric CWLP (Contrast Weighted Lp-norm). Evaluation metrics that are measured but
not used for optimization are also listed.

In Sec. 4, details are provided regarding the non-HDR (“linear”) first stage of ISP hyperparameter optimization for per-
ceptual IQ (Sec. 7.1 of the main document); sample first stage results are shown.

In Sec. 5, additional details are provided regarding the second stage of ISP hyperparameter optimization for perceptual IQ
(Sec. 7.1 of the main document).

In Sec. 6, the novel boundary-stabilizing CMA-ES centroid weights mentioned in Sec. 5 of the main document are derived.
Sec. 7 shows the effect of the SNR-drop emulation used to augment image detection and classification training sets. This

HDR fusion simulation method is described in Sec. 4 and used in Sec. 7.2 of the main document.
Sec. 8 details the method used to acquire automotive field data generated with a representative sample of sensor hyper-

parameter values, and we explain how we work around acquiring sufficient training data for each hyperparameter settings
or returning to the field every time the block coordinate descent method described in Algorithm 2 of Sec. 6 of the main
document enters CNN weight training. This is used in Sec. 7.2 of the main document.

Sec. 9 describes the false color rendering of HDR RAW used in Fig. 7 of the main document.
Finally, Sec. 10 provides additional sample object detection and classification results (Sec. 7.2 of the main document).

2. Description of Optimized Hyperparameters
2.1. Non-HDR ISP Hyperparameters Optimized for Perceptual IQ

The ON Semiconductor AP0202AT ISP is a state-of-the-art automotive ISP targeting high dynamic range (HDR) sensors.
In this work, it is paired with an ON Semiconductor AR0231AT imaging sensor. We keep sensor hyperparameters at their
vendor-optimized values when optimizing for perceptual IQ; only ISP hyperparameters are modified.

The AP0202AT ISP is vendor-optimized to provide “full auto-functions support” [1]; its hyperparameter space is consid-
erably smaller than other ISPs. Unlike other systems, the AP0202AT ISP modulation tables are obtained by interpolating
between exactly two threshold values of modulation parameters, a low threshold and a high threshold, under which and above
which dependent hyperparameter values are constant. This configuration, compatible with gain-based divide-and-conquer
tuning (of non-HDR hyperparameters), simplifies hyperparameter selection. We optimize ISP hyperparameter values at low
gain, and separately at high gain. Table 1 lists the ON Semiconductor AP0202AT ISP hyperparameters optimized at low
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Table 2: ON Semiconductor AP0202AT ISP hyperparameters optimized at high gain, for human vision on an LCD, with their
operational ranges. Hyperparameters are discrete; they are relaxed to continuous values in the optimization process.

Aperture correction Global tone mapping
Hyperparameter Operational range Hyperparameter Operational range
ap gain (high gain) {0, . . . , 15} contrast gradient (high gain) {0, . . . , 255}
ap thresh (high gain) {0, . . . , 255} contrast intercept point (high gain) {0, . . . , 255}

Demosaicking Color processing
Hyperparameter Operational range Hyperparameter Operational range
demosaic (high gain) {0, . . . , 255} saturation (high gain) {0, . . . , 255} but narrowed to {0, . . . , 127}

gain; Table 2 lists those optimized at high gain.
The default value of the ‘saturation’ hyperparameter at low gain (which we use) is 127. Given that color saturation should

decrease with gain, we narrow the search range of the high gain ‘saturation’ hyperparameter to {0, . . . , 127} (see Table 2).
CCM (Color Correction Matrix) coefficients (see Table 1) are only optimized so that, at convergence, other ISP com-

ponents work with well-adapted values. Final (“optimal”) CCM values are discarded after optimization. From the chosen
six CCM degrees of freedom, namely the six off-diagonal values of the 3×3 CCM matrix, the remaining, diagonal, matrix
values (‘ccm 0’, ‘ccm 4’ and ‘ccm 8’) are derived using the usual constraint that rows sum to 1. (This constraint assumes
that the CCM is used by the ISP to process white balanced image data, as is the case; prior to optimization, white balance is
performed separately at low and high gain using a simple method equalizing RGB color values within four middle grey chart
patches.) CCM coefficients’ narrowed search ranges are centered on the vendor-optimized settings for the laboratory rig’s
low gain capture conditions.

Except for CCM coefficients, hyperparameter values obtained in the first, non-HDR (“linear”), optimization stage (Sec. 4)
are used in the second, HDR hyperparameter optimization stage, during which they are fixed to the values obtained in the
first stage. See Sec. 7.1 of the main document.

2.2. HDR ISP Hyperparameters Optimized for Perceptual IQ

As indicated in Sec. 7.1 of the main document and in the last section, the same hardware, namely ON Semiconductor
AP0202AT ISP paired with ON Semiconductor AR0231AT imaging sensor, is further optimized for human viewing on an
LCD. In this second stage, only HDR ISP hyperparameters are optimized. Because, when optimizing in HDR mode, multiple
illumination scenarios are used at the same time within the optimization loop, hyperparameter values associated with different
gains are optimized simultaneously.

In HDR mode, the ON Semiconductor AP0202AT ISP has a brightness statistic which is the independent variable of some
of the modulation tables; hyperparameter values associated with the high and low threshold values of this statistic are labeled
with “bright” and “dark”. Also, some hyperparameters have a value used with low bit values, and another with high bit
values, labeled “(low)” and “(high)”.

Several search ranges are narrowed by trimming off lowest or highest values when they have the same effect as a value
kept within the range. This was determined from the ISP documentation as well as empirically. For example, there is
little difference between image results obtained with ‘acacd gr weights strength’ values in the range {7, . . . , 15} and those
obtained with the value 6. A less interesting example is ‘altm sharpness strength’: although in principle it has a 16-bit range,
this hyperparameter acts as if the ISP simply cycles through the first 64 values; higher values are simply redundant and
consequently are removed from the search range. In summary, HDR optimization is performed with “sane” hyperparameter
search ranges, as described in Sec. 5 of the main document.

2.3. HDR Sensor and ISP Hyperparameters Optimized for Object Detection and Classification

The Renesas REN AC 085 ISP is a state-of-the-art automotive ISP targeting HDR based on the ARM Mali ISP [3]. As
discussed in Sec. 7.2 of the main document, it is paired with the state-of-the-art Sony IMX490 HDR automotive imaging
sensor [2]. Jointly with downstream CNN detector weights, both the sensor and the ISP are optimized for object detection
and classification.

41 hyperparameters, namely 6 sensor and 35 ISP hyperparameters, are optimized. Optimized sensor components in-
clude on-sensor noise reduction, motion compensation, and motion-driven false color correction. Optimized ISP components
include denoising, local tone mapping, demosaicking (edge detection, edge enhancement, false color correction), color cor-
rection and global tone mapping. Noise profile calibration and white balance are performed before optimization. Table 4 lists
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Table 3: ON Semiconductor AP0202AT ISP hyperparameters optimized in HDR mode, with their operational ranges. Hy-
perparameters are discrete; they are relaxed to continuous values in the optimization process.

Denoising (adaptive color difference)
Hyperparameter Operational range
adacd gr weights strength (low) {0, . . . , 15} but narrowed to {1, . . . , 6}
adacd gr weights strength (high) {0, . . . , 15} but narrowed to {1, . . . , 6}

Adaptive local tone mapping
Hyperparameter Operational range
altm key k 0 {0, . . . , 65535} but narrowed to {20, . . . , 400}
altm gamma bright (low) {0, . . . , 65535} but narrowed to {0, . . . , 128}
altm gamma bright (high) {0, . . . , 65535} but narrowed to {0, . . . , 256}
altm gamma dark (low) {0, . . . , 65535} but narrowed to {0, . . . , 128}
altm gamma dark (high) {0, . . . , 65535} but narrowed to {0, . . . , 256}
altm sharpness strength (bright) {0, . . . , 65535} but narrowed to {0, . . . , 63}
altm sharpness strength (dark) {0, . . . , 65535} but narrowed to {0, . . . , 63}

the Sony IMX490 sensor and Renesas REN AC 085 ISP hyperparameters modified in our experiments, with their operational
search ranges.

The six CCM coefficients ‘coef a 12’ up to ‘coef a 32’ are, like in Sec. 2.1, the off-diagonal ones, and the “missing”
diagonal entries of the 3×3 matrix, namely ‘coef a 11’, ‘coef a 22’ and ‘coef a 33’, are automatically generated so that the
CCM has unit row sums. Search ranges for the off-diagonal coefficients are restricted to values that correspond to [91, 0.5]
once converted to floating point values, range that produces diagonally dominant CCM matrices (unless possibly multiple
entries reach 0.5) with the row sum 1 constraint, and also found empirically to be sufficient for most sensors and illuminants
when mapping RGB to RGB (in extreme situations, values below 91 may be needed).

ISP threshold hyperparameters (‘thresh 1’ and ‘thresh 4’) which can have different values horizontally and vertically were
set to be equal. (In the future, they may be decoupled given that patterned noise does not appear to be the same with respect
to the two directions with every sensor and ISP combination.)

So as to obtain a reasonably sized field captures dataset with a fixed set of sampled values, given that sensors do not support
RAW injection (only some ISPs) so that all sensor processing needs to be done at the capture time, sensor hyperparameters
that parameterize false color correction are sampled at only 5 carefully chosen values. In addition, two of the hyperparameters
(‘cf1’ and ‘cf2’) are set to be equal and consequently only sampled with equal values, given that they were found empirically
to impact the output image in approximately the same way.

IMX490 Sensor hyperparameter values impact the output in strongly coupled ways. For example, if the ‘noise reduction’
toggle is 0, none of the other hyperparameters have any effect. Similarly, if the ‘motion compensation’ toggle is 0, the
sensor hyperparameters that follow it in the list have no effect; likewise for ‘false color correction’. In all, 254 combinations
of sensor hyperparameters were sampled. Before the usual affine mapping normalizing values to the continuous interval
R[0,1], the values {512, 1448, 4096, 11585, 32767} of the ‘cf’ sensor hyperparameters were mapped to {0, 1, 2, 3, 4} so as
to equalize the sizes of the continuous basins of attraction of the five sampled values as “seen” by the optimizer. A more
detailed discussion of the sampling of 254 combinations of sensor hyperparameters is found in Sec. 8.

3. End-To-End Loss Functions

Unlike evaluation metrics used to compare different systems [7, 11, 16, 17, 21, 23], the evaluation metrics used in this
work are directly used as losses. Specifically, we optimize image sensor and ISP hyperparameters for human viewing on
an 8-bit display (for perceptual Image Quality (IQ)). We also optimize image sensor and ISP hyperparameters as well as
the weights of a downstream deep CNN so that the entire pipeline, from sensor to ISP all the way to the CNN prediction,
maximize object detection and classification performance. This sections details the end-to-end loss functions used for each
purpose.

3.1. Perceptual Image Quality (IQ) Losses

Several loss functions are used to optimize ISP hyperparameters for human vision [18, 22]. These losses drive the opti-
mizer toward image characteristics that human viewers find desirable like detail preservation and contrast, and away from
undesirable ones like structured noise and jagged or smeared edges.

We use the following pixel loss `i is computed for every output image pixel i within the Region of Interest (far enough
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Table 4: Sony IMX490 Sensor and Renesas REN AC 085 ISP hyperparameters and their operational ranges. Hyperparame-
ters are discrete; they are relaxed to continuous values in the optimization process.

Component Hyperparameter Operational Range
Sensor noise reduction (RNR) {0, 1}

motion compensation (MDET) {0, 1}
false color correction (UP ON) {0, 1}

cf0 {0, . . . , 32767} but restricted to {512, 1448, 4096, 11585, 32767}
cf1 = cf2 {0, . . . , 32767} but restricted to {512, 1448, 4096, 11585, 32767}

cf3 {0, . . . , 32767} but restricted to {512, 1448, 4096, 11585, 32767}
ISP: Denoiser thresh 1h = thresh 1v {0, . . . , 255}

thresh 4h = thresh 4v {0, . . . , 255}
strength 1 {0, . . . , 255}
strength 4 {0, . . . , 255}
thresh long {0, . . . , 255}
be power 0 {0, . . . , 1000}
be gamma {0, . . . , 250}

ISP: Local Tone Mapper asymmetry power {0, . . . , 100}
slope min {0, . . . , 255}
slope max {0, . . . , 255}

variance space {0, . . . , 15}
variance intensity {0, . . . , 15}

ISP: Demosaicking vh slope {0, . . . , 255}
vh thresh {0, . . . , 10000}
va slope {0, . . . , 255}
va thresh {0, . . . , 10000}
aa slope {0, . . . , 255}
aa thresh {0, . . . , 10000}
uu slope {0, . . . , 255}
uu thresh {0, . . . , 10000}

sharp alt ld {0, . . . , 255}
sharp alt lu {0, . . . , 255}
sharp alt ldu {0, . . . , 255}
fc alias slope {0, . . . , 255}
fc alias thresh {0, . . . , 255}

fc slope {0, . . . , 255}
np offset {0, . . . , 255}

ISP: Color Space Conversion coef a 12 {0, . . . , 5880} but restricted to {3839, . . . , 4223}
coef a 13 {0, . . . , 5880} but restricted to {3839, . . . , 4223}
coef a 21 {0, . . . , 5880} but restricted to {3839, . . . , 4223}
coef a 13 {0, . . . , 5880} but restricted to {3839, . . . , 4223}
coef a 31 {0, . . . , 5880} but restricted to {3839, . . . , 4223}
coef a 32 {0, . . . , 5880} but restricted to {3839, . . . , 4223}

ISP: Global Tone Mapper mu {0, . . . , 20000}
gamma {0, . . . , 1000}

from its boundary). The `is (assumed ≥ 0) are then aggregated with a normalized Lp-norm into an overall loss

L= p

√
1∑
i1

∑
i`
p
i , (1)

the denominator being the number of pixels over which the loss is averaged. With p= 1, this construction is used for all of
this work’s IQ losses.

Reduced-reference metrics [6] quantify the occurrence of targeted artifacts within ROIs that have suitable visual content;
one such evaluation metric, Zippering, is used in this work. The full-reference image difference metrics used in this work
compare the output image to a higher bit-depth version (FSITM), or to an aligned and enhanced rendering of the chart
captured by the camera, the aligned reference (CWLP).

3.1.1 Feature Similarity Index for Tone-Mapped images (FSITM)

Because LCDs generally have a lower bit-depth than HDR sensors, Tone Mapping Operators (TMOs) are often used to lower
image bit-depth (e.g., from 20- or 14-bit to 8-bit). FSITM, proposed by Nafchi et al. [19] for TMO assessment, uses the HDR
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RAW as reference; the lower bit-depth output of the ISP is compared to it using the locally weighted phase angle, a robust
noise-independent measure that quantifies whether RAW details are preserved. These per pixel values are aggregated with
(1) and converted to a dissimilarity index by subtracting from 1.

In this work, 20-bit decompanded demosaicked linear RGB was used as reference by FSITM.

3.1.2 Contrast-Weighted Lp-Norm (CWLP)

CWLP is a novel image difference metric. It is the only evaluation metric used to drive the optimizer in both stages of
optimization for human viewing (Sec. 7.1 of the main document).

In this work, the only CWLP Lp-norm involved is the L1-norm (Lp with p=1) by way of the corresponding Minkowski
distance, namely the average of the absolute differences of the pixel values of the ISP output and the reference image across
all RGB channels.

CWLP is a convex combination (linear combination with non-negative weights) of an unweighted L1-norm of the dif-
ferences between RGB value vectors, used to make the global tone map of the ISP output similar to the tone map of the
reference [18, 22, 24], and of a weighted L1-norm targeting the detail layer. CWLP’s per-pixel weights use a pair of five-
pixel masks, a “+” and an “×”, suited for the optimization of demosaicking, sharpening and denoising modules that operate
near Nyquist. The contribution of one channel and one mask to the weight of one pixel’s RGB differences is the square of
Larkin’s universal Noise Visibility Function DQ [14]:

weight contribution =
σ2
− + ε

σ2
− + σ2

+ + 2ε
, (2)

where σ− (resp. σ+) is the standard deviation of the channel value differences (resp. sums) between the two images over the
mask, and ε is a small positive constant. Weights obtained with the “+” and “×” masks are aggregated by convex combination
with weights inverse proportional to the diameter of the mask, and then averaged across channels. This per-pixel weight
multiplies the L1-norm of the central pixel’s RGB difference vector, which is then aggregated with (1) before combination
with the unweighted L1-norm. Finally, the result is converted to log-scale after adding 1 so that image differences scale
roughly like bits.

When optimizing HDR hyperparameters (the second stage of the procedure described in Sec. 7.1 of the main document),
before the aligned reference and ISP output images are compared, output image ROIs are individually scaled (in linear RGB)
so that a central estimate related to the trimean matches the reference’s. Following normalization, pixel value differences and
variances were then computed in gamma 3 RGB so as to penalize shadow differences more than highlight differences.

Normalization was not performed when optimizing non-HDR (“linear”) ISP hyperparameters (the first stage of the pro-
cedure described in Sec. 7.1 of the main document; also see Sec. 4). When optimizing “linear-mode” ISP hyperparameters,
pixel value differences and variances were computed in gamma 2.2 RGB.

3.1.3 Zippering

The Zippering loss [22] quantifies near-Nyquist structured noise that corrupts smooth lines, interfaces and regions. It can be
used to detect zippering, an artifact that consists of contrasting single pixels jutting in and out of an interface like a zipper.
Zippering loss ROIs should only contain smooth-edged features like hyperbolic wedges; in this work, the ROIs are smooth
(they are featureless). After scaling so that the capture has the same mean as the chart within the ROI, per channel, per
pixel maximins are obtained as follows: Compute, within a 3×3 mask, the distance between the closest pixel values within
a 4-pixel “T” and the pixel values of its complement within the 3×3, a 5-pixel “U”, when the values are separated, that
is, when all the values within one of the masks are larger than those within the other (if not separated, assign 0); then take
the maximum over the four orientations. That is: Over one image channel o and one orientation (“upright”, as opposed to
“rotated left”, “rotated right”, or “upside down”), compute

max

(
max(0,min

i∈T
oi−max

i∈U
oi),max(0,min

i∈U
oi−max

i∈T
oi)

)
, (3)

and average over all orientations and channels before aggregating with (1). Following normalization, pixel value differences
are computed in linear RGB (gamma 1).
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3.1.4 Additional Reported Evaluation Metric (Not Used for Optimization): SNR

When optimizing for perceptual IQ, Signal-to-Noise Ratio (SNR) was monitored using using flat patches of the light box
Imatest chart (see Table 1 and Fig. 3 of the main articles). It was computed as follows: Convert the sRGB output image to
linear RGB with sRGB primaries. From the linear RGB values, compute a luminance Y using Rec. 709 coefficients

Y = 0.2126R+ 0.7152G+ 0.0722B. (4)

The SNR of a (flat) patch is then

SNR = 20 log10

average of Y within the patch
standard deviation of Y within the patch

. (5)

3.2. Object Detection and Classification Losses

The following losses are used in the assessment of the proposed method for image understanding presented in Sec. 7.2 of
the main document.

3.2.1 Mean Average Precision with IoU > 0.5

In this work, the downstream image understanding module returns a collection of bounding boxes together with a classifica-
tion of the content into one of the search classes. With the result of hand annotation treated as ground truth, Mean Average
Precision (mAP) with IoU (Intersection over Union) > 0.5 is used as evaluation metric [15, 20]. (With mAP, higher is better.
mAP is turned into a loss by subtracting it from 1.) Obtaining the mAP score corresponding to a sensor and ISP hyperparam-
eter setting is computationally expensive because a meaningful score requires pushing a large number of captures through
the sensor, ISP and the downstream CV module, and because meaningful mAP scores require large numbers of objects to
available for detection.

3.2.2 Additional Reported Evaluation Metrics (Not Used for Optimization): mAP with IoU > 0.75 and mAR

The values of mAP with IoU > 0.75 and mAR (mean Average Recall [20]) are also reported in the main article; they are not
used to optimize.

4. “Linear” (Non-HDR) Hyperparameter Optimization for Perceptual Image Quality
A two-stage optimization procedure is used to optimize the hyperparameters of an ISP for perceptual image quality

efficiently and reproducibly (see Sec. 7.1 of the main article). In this section, the first stage (“linear”, that is, non-HDR) is
described in detail.

Following Mosleh et al. [18], we minimize the distance between the ISP output image and a reference image, namely the
random ellipses ROI found in the central region of the aligned and resampled Rainbow Chart. The full resolution Rainbow
Chart, without additional tone mapping and sharpening, is displayed on a ViewSonic VP2780-4K display colorimetrically
calibrated to the white point of CIE Standard Illuminant D65. The camera and LCD are enclosed inside a dark optimization
box. This setup, with Rainbow Chart displayed, is shown in Fig. 1. (A variant of the same Rainbow Chart was also used
by Tseng et al. [22].) The proposed method differs from that of Mosleh et al. in the use of a novel image difference metric,
Contrast Weighted Lp-Norm (CWLP) (see Sec. 3.1.2). The resampled, so as to be aligned, Rainbow Chart is tone-mapped
with a sigmoid-like curve to boost global contrast and, when optimizing at low gain, it is sharpened by unsharp masking
(in gamma 2.2, using a method that preserves color lines, and without a threshold since there is no noise) to raise artificial
acutance. The modified aligned reference is used as reference in the image difference metric; the ISP is consequently driven
by the optimizer to reproduce the perceptual image quality attributes of the enhanced aligned reference as they manifest
themselves within the random ellipses ROI.

Optimization is performed separately for two scenarios: bright (low gain) and dark (high gain). With the ON Semicon-
ductor AP0202AT ISP, this is enough to fill a modulation table (see Sec. 2.1). Bright conditions were achieved by setting
the display peak luminance to 435 cd/m2, whereas for dark conditions luminance went down to 1 cd/m2. For each scenarios,
an exposure suitable for optimization exposure was found by finding the minimizer of the CWLP loss (computed from the
output of the ISP configured with vendor-optimized values) within an exposure sweep. In addition, white balance gains were
found by equalizing the green-to-red and green-to-blue channel ratios of the four mid-gray patches of the Rainbow Chart
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Figure 1: Non-HDR (“linear”) ISP optimization laboratory rig with Rainbow Chart displayed on the LCD. During optimiza-
tion, the camera (attached to a tripod head) and LCD are isolated from their surroundings by an opaque black curtain.

Table 5: Perceptual IQ loss values at the conclusion of non-HDR (“linear”) optimization. Lower is better.

Loss
Low gain High gain

Expert-tuned Optimized Expert-tuned Optimized
CWLP 4.314 4.230 4.758 4.721

with a simple search algorithm based on the reciprocal of each ratio to update the corresponding white balance gain. The
resulting exposure times and white balance coefficients were kept fixed during optimization.

Sec. 2.1 specifies the ISP hyperparameters that were optimized with each scenario. Unless there are ties (and, conse-
quently, a kernel), an optimization run with respect to one single loss (CWLP, here) produces one single optimal solution.
One single solution is indeed obtained for each scenario.

Table 5 shows the values of the CWLP loss measured on the Rainbow Chart random ellipses ROI of the output image
generated using expert-tuned ISP hyperparameters on the one hand, and ISP hyperparameters optimized with the proposed
method on the other, exactly as the loss is computed while optimizing. As shown in Fig. 2 and 3, the proposed method
generally produces images with more contrast and detail, better colors and less noise, in particular, less structured noise.

5. Additional Details on HDR ISP Hyperparameter Optimization for Human Viewing

In the second stage of the procedure described in Sec. 7.1 of the main article, FSITM was evaluated on an ROI encompass-
ing all the targets within the scene (including the halogen lamp and the small paper chart), normalized CWLP was evaluated
on the three LCDs and the light box (when turned on), and the Zippering loss was only measured on the Dell display in one
of the scenarios, scenario in which the Dell LCD shows a smooth, featureless greyscale chart. A small paper chart, printed
with a small, dark version of the random ellipses chart displayed on the LCDs, was placed in the shadows (behind the light

8
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Figure 2: Non-HDR (“linear”) low gain optimization results. Images processed with ISP settings obtained with the proposed
method are nearly free of the zippering artifact (first crop) unlike those expert-tuned and, especially, those obtained by
Mosleh et al. The proposed method also has the cleanest interfaces among the alternatives (last crop). Compared to the
expert-tuned result, the proposed method has more fine detail and less artifacts (compare with the aligned reference, at the
bottom). Although the method of Mosleh et al. has more contrast and detail, it also has considerably more artifacts and some
of the details do not reflect the aligned reference. Zoom into the full size capture to view other areas. Note: Loss based solely
on the random ellipses area; the rest of the aligned reference is rendered to match.

sources); this paper chart was only “seen” by FSITM.

Displays were colorimetrically calibrated to the CIE Standard Illuminant D65 white point. The light box illuminant was
set to D65. As in the first stage, the rig was enclosed within a dark optimization box (see Fig. 3 of the main article). The
white balance gains used in the first stage were also used in the second.

Charts were designed to include a combination of flat regions and variable-contrast texture patterns using random ellipses
generated so that a non-clipping central estimator related to the trimean be equal in the random ellipse area and in the flats.

The nineteen CWLP losses (each from a different combination of a scenario and an LCD or light box), seven FSITM
losses (one per scenario) and one Zippering loss were aggregated with the weighted max-rank loss [18], with larger weights
given to the CWLP losses corresponding to darker ROIs within a scene and to the Zippering and FSITM losses.
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Figure 3: Non-HDR (“linear”) high gain optimization results. Images processed with ISP settings obtained with the proposed
method have the fewest artifacts and show faithful details. The proposed results show significantly fewer vertical ripples and
have cleaner interfaces than the expert-tuned ones. Although the Mosleh et al. results have more detail and contrast, they
contain a lot more spurious details and artifacts. (Compare with the aligned reference (bottom row).) Zoom into the full size
capture to view other areas. Note: Loss based solely on the random ellipses area; the rest of the aligned reference is rendered
to match.

6. Boundary-Stabilizing CMA-ES Centroid Weights
The most significant difference between the CMA-ES variant used as 0th-order solver by the proposed sensor and ISP

optimization method is, as mentioned in the Introduction and Sec. 5 of the main article, novel CMA-ES centroid weights that
stabilize boundary minima when search domain boundaries are dealt with by mirroring.

The most commonly used variants of CMA-ES [9] set the next generation’s centroid Θ to be a weighted linear com-
bination, with fixed weights (unless there are ties, in which case weights may be redistributed; we will ignore ties in the
following), of the current generation’s hyperparameter vectors

Θ =
∑
p

wp(rankp)Θp, (6)

where rankp is the rank of Θp within the generation, rank based on the loss value: If, for example, Θp has the very best loss
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value within its generation, rankp = 0; if it has, for example, the very worst rank of its generation, and generations have
λ samples (in Algorithm 1 of the main article, λ = 2P, where P is the number of hyperparameters being optimized), then
rankp = λ− 1. (Ranks could start at 1 instead of 0. Starting at 0 is convenient when using the max-rank loss [18].)

CMA-ES draws the next generation’s trials using a Gaussian distribution centered at the current value of Θ, fixed within
the generation. (This Gaussian distribution is modified with the so-called covariance matrix σC; again, we will ignore this
complication in the following.) The mirroring boundary condition [5, 9, 10, 13], reflects randomly generated Θp hyperpa-
rameter vectors that fall outside of the search domain back inside. When optimizing within an hypercube, the novel weights
are such a minimum located at the boundary of the hypercube are stable in the following (weak) sense.
Definition Rank-based centroid weights wp(rankp) are weakly boundary stable (with respect to the mirroring boundary
condition) if whenever the loss function strictly monotonically depends only on one hyperparameter, and the current centroid
is a minimum located at the boundary, the (statistical) expectation E(Θ) of the updated centroid is also on that boundary
provided it is the only boundary about which reflection occurs as the result of using mirroring boundary conditions.

The rather strong separability assumption allows to reduce the issue of stability to 1D. Without loss of generality we can
also assume that the boundary is located at 0, and that the domain is R[0,1].

No method which only uses positive weights can be weakly boundary stable. This is seen in that mirroring a Gaussian
distribution centered at 0 back into the positive real axis generically yields samples which are strictly positive, and no linear
combination of positive numbers with positive weights ever equals 0. Leaving aside pathological methods in which all
the weights are zero, this means that only active CMA-ES methods, that is, methods that use both positive and negative
weights [12], are candidates for weak boundary stability.

First, let us assume an affine functional form for the active rank-based weighting function

wp(rankp) =
1

s

(
1− m

λ− 1
rankp

)
, (7)

where λ is the number of drawn samples per generation and s is chosen so that the sum of the weights is 1 as befits weighted
averaging, which leaves one degree of freedom, the slope factor m. (The following construction applies to other functional
forms. Another is discussed below.)

Remembering that mirroring a normal distribution about its center results in a half-normal (a.k.a. folded normal a.k.a. pos-
itive normal) distribution, weak boundary stability boils down to the statistical expectation of the centroid update vanishing,
that is,

E

(
λ∑
p=1

wp(rankp)Θp

)
= 0, (8)

where Θp are λ samples drawn from the half-normal distribution, and rankp is the natural ordering with respect to the
(positive) real axis. Monte-Carlo simulation rather quickly leads one to conjecture that m =

√
2 for every value of λ. This

conjecture gets independent numerical validation by translating the problem into one involving the chi order statistics of the
half-normal and using the numerically derived tables published in [8].

In summary, when all the drawn hyperparameter vectors get a weight, the weakly boundary stabilizing weights are obtained
by giving a rank of 1 to the best ranked vector, a rank of 1 −

√
2 to the worst rank, and interpolating linearly between these

weights based on rank. These weights were used in this work.
Most CMA-ES methods discard the worst (with respect to the loss) drawn hyperparameter vectors. In other words, some

proportion of the hyperparameter vectors of one generation, the worst ones, get a weight of 0, and only the better ranked
hyperparameter vectors get a nonzero weight in the centroid update. The most common discard proportion is half. Given that
µ is often used for the number of non-discarded hyperparameter vectors in CMA-ES methods, this means that µ = λ/2 (for
λ even). In this situation, Monte-Carlo simulation suggests that the weakly boundary stabilizing value of m for

wp(rankp) =

{
1
s

(
1− m

µ−1 rankp

)
when rankp < µ, and

0 when µ ≤ rankp .
(9)

is approximately equal to 1.489135. This, again, is numerically confirmed by [8].
The exact functional form of the dependence of the weight on the rank is not important. What matters is that it be

monotone decreasing—as it should—and smooth as a function of the ranks of the non-discarded hyperparameter vectors, and
then Monte Carlo simulation can be used to obtain weakly boundary stabilizing weights.
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Figure 4: SNR-drop emulation example. Top: Fully processed from unmodified stitched RAW. Bottom: Fully processed
from stitched RAW augmented with emulated SNR-drop artifacts. Texture changes are most obvious in the pavement about
one third of the way from the bottom of the image and in the rear window of the car closest to the camera.

7. SNR-Drop Artifact Emulation
The emulation of fusion artifacts for the purpose of augmenting field data is justified and described in Sec. 4 of the main

article; it is used in Sec. 7.2.
Fig 4 shows an example of what the augmentation does to a capture. Even fully processed by the ISP (instead of in the

RAW), the artifacts look realistic.

8. One-Time Acquisition of Field Data Without RAW Injection
The methods described in this section were used in Sec. 7.2 of the main article.
The sensors used in this work do not allow for RAW injection of pre-captured RAW data, i.e. emulation of a live sensor

feed after the actual capture process. Consequently, the optimization of sensor hyperparameters requires the acquisition of
new captures every time sensor hyperparameter values are changed. In-the-field automotive field data, ideally, should only
be acquired once. Thus, representative data, suitable for both optimization and training, should be acquired the first time
around.
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Algorithm 1 Sensor Hyperparameter Sweep Method.
1: value← [512, 1448, 4096, 11585, 32767]
2: while driving do
3: CF3 up← false
4: CF0 up← false
5: CF12 up← false
6: RNR← 1
7: MDET← 1
8: UP ON← 1
9: for i = 1 to 4 do

10: if CF3 up then
11: CF3← value[i]
12: else
13: CF3← value[4− i]
14: end if
15: for j = 0 to 4 do
16: if CF0 up then
17: CF0← value[j]
18: else
19: CF0← value[4− j]
20: end if
21: for k = 0 to 4 do
22: if CF12 up then
23: CF1← value[k]
24: CF2← value[k]
25: else
26: CF1← value[4− k]
27: CF2← value[4− k]
28: end if
29: Take capture with current hyperparameter combination
30: end for
31: CF12 up← not CF12 up (Flip sweep direction)
32: end for
33: CF0 up← not CF0 up (Flip sweep direction)
34: end for
35: CF3 up← not CF3 up (Flip sweep direction)
36: UP ON← 0
37: Take capture with current hyperparameter combination
38: MDET← 0
39: Take capture with current hyperparameter combination
40: RNR← 0
41: Take capture with current hyperparameter combination
42: MDET← 1
43: Take capture with current hyperparameter combination
44: UP ON← 1
45: Redo above for i = 1 up to 4 loop
46: CF3 up← not CF3 up (Flip sweep direction)
47: end while

If one samples too many sensor hyperparameter combinations, or if one samples them randomly, the time elapsed between
captures made with similar hyperparameters, let alone very different ones, will be such that scene changes may dominate loss
function variations. In order to minimize this risk, 254 representative sensor hyperparameter settings were sampled (see
Table 4) while the data acquisition car was capturing field data samples.

8.1. In-Field Acquisition of Sensor-Processed RAWs With Variable Settings

Past coarse (initial) convergence, the 0th-order optimizer compares nearby hyperparameter settings. It consequently makes
sense to sample nearby hyperparameter values as close to each other as possible in time when in the field, so that scene
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variations not overwhelm the loss differences that arise from changing hyperparameter values. Taking into account that some
hyperparameters are toggles that deactivate other hyperparameters, the sampling method shown in Algorithm 1 modifies
exactly one single hyperparameter value that has an effect from one capture to the next and covers the 254 chosen sensor
hyperparameter combinations within every sequence of consecutive 254 captures.

8.2. Reuse of Sensor-Modulated Field Data for CNN Training

The following procedure for selecting RAWs from a collection that samples sensor settings takes into account that we
optimize sensor hyperparameters which are toggles that deactivate the others, so that that large subsets of the unit hypercube
RP

[0,1] have the exact same effect. So, aggregate hyperparameter combinations by partitioning RP
[0,1] with respect to the

equivalence relation defined by having the same effect on-sensor. Because equivalence classes are subsets of Euclidean space,
they inherit its distance function. To train the CNN weights for a fixed Θ, select the RAWs associated with the equivalence
classes closest, with respect to the Euclidean distance, to Θ’s equivalence class. From this pool of RAWs acquired with
settings close to those currently considered optimal, random samples can be extracted for each iteration of stochastic gradient
descent. Note that because the ISP which further processes sensor output accepts injected data, output images resulting from
modulated ISP hyperparameters values are computed on demand.

9. False Color HDR Rendering
In the main document, false color HDR renderings of two of the stitched RAW used to generate the results of Fig. 6 are

shown in Fig. 7. Following [4], they are obtained by mapping L (specifically the average of the four linear decompanded
RAW pixel values of 2×2 Bayer cells) to the HSV hue, by way of H = 240◦ log(1+Lmax)−log(1+L)

log(1+Lmax)−log(1+Lmin)
, so that Lmin is mapped

to 240◦ (blue) and Lmax to 0◦ (red).

10. Additional Automotive Object Detection Results
In this section, additional sample results of the joint sensor, ISP and deep CNN optimization are shown; a few are found in

Sec. 7.2 of the main article. As shown in Figure 5 and 6, the proposed joint optimization outperforms expert-tuned pipelines
and Mosleh et al. [18] in low light conditions which tend to be harsher and noisy. Even in high light conditions where the
data tends to be less noisy, the proposed method improves slightly on already well performing baselines. This improvement
in performance can be attributed to better signal quality, lower noise and improved data compression in 14-bit HDR output
of the ISP, which when processed with the downstream YOLOv4 model resulted in improved detections in harsher lighting
conditions and detections of smaller (distant) objects.
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[4] Ahmet Oğuz Akyüz and Osman Kaya. A proposed methodology for evaluating hdr false color maps. ACM Trans. Appl. Percept.,

14(1), July 2016. 14
[5] Jarosłlaw Arabas, Adam Szczepankiewicz, and Tomasz Wroniak. Experimental comparison of methods to handle boundary con-

straints in differential evolution. In Robert Schaefer, Carlos Cotta, Joanna Kołodziej, and Günter Rudolph, editors, Parallel Problem
Solving from Nature, PPSN XI, pages 411–420, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. 11

[6] Shahrukh Athar and Zhou Wang. A comprehensive performance evaluation of image quality assessment algorithms. IEEE Access,
7:140030–140070, 2019. 5

[7] IEEE Standard for Camera Phone Image Quality IEEE Std 1858-2016 (Incorporating IEEE Std 1858-2016/Cor 1-2017), May 2017.
4

[8] Zakkula Govindarajulu and Stan Eisenstat. Best estimates of location and scale parameters of a chi (1 df) distribution, using ordered
observations. Reports of statistical application research, Union of Japanese Scientists and Engineers, 12:149–164, 1965. 11

[9] Nikolaus Hansen. The CMA evolution strategy: A tutorial. CoRR, abs/1604.00772, 2016. 10, 11
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