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In this document we provide additional discussion and results in support of the primary text.

1 ADDITIONAL EXPERIMENTAL COMPARISONS

1.1 Filtered Backprojection Comparisons
The first proposed reconstruction method for NLOS reconstruction is filtered backprojection which propagates
and aggregates time-resolved intensity measurements back into in the occluded volume, followed by a Laplacian
or Laplacian of Gaussian filter [Velten et al. 2012], an approach extended in recent years [Arellano et al. 2017;
Jarabo et al. 2017; Laurenzis and Velten 2014]. Although these methods have been evaluated in prior work [Lindell
et al. 2019; Liu et al. 2019], for completeness, we provide results from different filtered backprojection variations in
Fig. 1. Specifically, we compare the filtered backprojection using Laplacian filtering using the code from [Lindell
et al. 2019] and filtered backprojection using Laplacian and LoG filtering [Laurenzis and Velten 2014] using the
code from [Liu et al. 2019]. Although the Laplacian-filtered variants both implement the approach from [Velten
et al. 2012] we did notice differences in both implementations, and, hence, present all methods for completeness.

Consistent with prior work, we find that existing backprojection methods succeed in recovering detail even for
complex scenes, but this comes at the cost of compute time. Specifically, backprojection methods have a runtime
complexity of O(N 5) with N as the volume resolution. For our experiments, a single transient reconstruction
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BP+Lapl. BP+Lapl. BP+LoG U-Net+GAN LCT-TV
(code from (code from (code from (code from

[Lindell et al. 2019]) [Liu et al. 2019]) [Liu et al. 2019]) [O’Toole et al. 2018]) Scene

Fig. 1. Additional Reconstructions from Pulsed Single-Photon Measurements For completeness, we show recon-
structions from different filtered back-projection (BP) implementations. Specifically, we list BP + Laplacian filtering using the
code from [Lindell et al. 2019], BP + Laplacian filtering and LoG filters using the code from [Liu et al. 2019]. As additional
methods using priors, we show results from a UNet trained with generative adversarial training in the fourth columns and
iterative LCT with total variation regularization using the code and parameters from [O’Toole et al. 2018].
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took around 1 hour for the 256×256×512 transient measurement while the recent LCT, FK or Phasor method take
several seconds, and the proposed method takes runs at 45 milliseconds for a single reconstruction.

1.2 Encoder-decoder and Generative Adversarial Baselines
In Fig. 12 of the main paper, we show that encoder-decoder networks, based on the popular U-Net architec-
ture [Ronneberger et al. 2015], fail to generalize to real data when only trained in simulation. In this section,
we provide additional detail on the U-Net architecture we evaluate, and we validate that generative adversarial
training represents no alternative to the proposed method.

Transient U-Net Architecture Details. To map transient images to 2D renderings, we use a 3D U-Net embedded
and the differentiable rendering architecture described in the main paper. Specifically, given a raw transient
image of size (512, 256, 256, 3), the encoder network applies four convolutional downsampling blocks, resulting
in a feature of size (32, 32, 32, 64). The 3D U-Net has four downsampling and four upsampling steps. At each
downsampling step a 3 × 3 × 3 convolution with stride 2 and output channel number doubled is applied and
followed by an instance normalization layer and LeakyReLU. Each upsampling step consists of a 3 × 3 × 3
up-convolution with stride 2 that halves the number of input feature channels, an instance normalization layer, a
ReLU, and a concatenation with a feature map from its corresponding downsampling stage. We apply dropout
during the early-stage feature extraction to enhance the networks’s robustness. The image and depth rendering
network shares exactly the same structure as described in the main document.

Adversarial Loss. In addition to the vanilla U-Netmodel, we also evaluatewhether adding adversarial losses [Good-
fellow et al. 2014] can help the generalization to real data. To this end, we use a U-Net model with the same
architecture as described above, and add a discriminator network to adversarially train the reconstruction model.
The discriminator network similar to [Radford et al. 2015] which is composed of 5 downsampling convolutional
layers with kernel size 4 and stride 2 and one final fully connected layer to distinguish between GT and recon-
structed images. All convolutional layers are interlaced with IN and LeakyReLU (with slope 0.2). We use the
same GAN loss as described in [Radford et al. 2015] plus previous RGB-D reconstruction loss as described in
Sec. 5.2 in the main paper. In Fig. 1, we show experimental reconstructions from U-Net architecture trained with
additional GAN loss. While this model recovers rough shape, it fails to recover fine detail and complex structures
such as the bike or the complex room scene. This experiment and the U-Net results in Fig. 12 of the main paper
both validate that existing encoder-decoder networks and generative adversarial networks do not generalize to
experimental data, confirming the effectiveness of the proposed network architecture.

1.3 Total Variation Regularization
Iterative LCT with total variation regularization [O’Toole et al. 2018] allows to incorporate traditional sparse
gradient priors into the reconstruction. The authors rely on an ADMM optimization algorithm to combine
LCT-based inverse filtering with sparsity priors. While this process method takes around 5 seconds to optimize a
64×64×512 transient cube per iteration, this runtime increases to 60 seconds for our measurement resolution of
256×256×512. The overall optimization requires hundreds of iterations translating to hours of runtime, whereas
the proposed method runs at interactive framerates and allows to incorporate more effective learned priors
instead of traditional sparsity priors.

Even with author-provided parameters and using the authors’ code, the total variation-regularized reconstruc-
tions fail to recover detail. Reconstruction noise, present in the Phasor reconstruction method [Liu et al. 2019] is
suppressed at the cost of losing fine structures. The proposed method learns more effective priors that preserve
fine detail while suppressing substantial reconstruction noise.
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F-K F-K → U-Net Phasor Phasor → U-Net Scene

Fig. 2. Additional Learned Denoising Comparisons from Pulsed Single-Photon Measurements We train a 2D U-
Net denoiser on top of F-K and Phasor predictions and train it on synthetic bike dataset. We find that a 2D denoiser
helps to reduce reconstruction noise and produce a cleaner background, especially for Phasor estimates. However, such
post-processing approaches struggle to distinguish scene content from unwanted low-frequency recovery noise. As such,
learned denoisers also tend to eliminate fine scene geometry from the estimates making them no alternative to the proposed
method demonstrated on the same data as Fig. 12 of the main manuscript.
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1.4 Denoising Baselines
As additional comparisons, Fig. ?? shows the reconstruction of F-K [Lindell et al. 2019] and Phasor [Liu et al.
2019] combined with a learned 2D U-Net denoiser. Specifically, we first use the F-K and Phasor method to predict
volumetric albedo on our training dataset and compute maximum-intensity projections along the z-axis. Next,
we train a vanilla 2D U-Net on this dataset to improve the reconstruction quality with L2 loss supervision using
the simulated ground truth images. The architecture of this standard 2D U-Net [Ronneberger et al. 2015] is
described in the following for completeness. The network first applies one convolutional layer with kernel size 5,
stride 2, input channel number 1 and output channel number 8. Then the downsampling stage contains seven
downsampling blocks where each block is composed of a 2D convolutional layer, a batch normalization layer
and a leaky ReLU (slope 0.2). Each of the seven blocks downsamples its input feature by a factor of two spatially
(stride two for the convolutional layer) and doubles the input channel number (except for the last two blocks
whose output channel number is the same as the input channel number). The convolutional layers in the first six
downsampling blocks have kernel size 5, and are padded by two more zeros on each boundary to guarantee the
output feature is exactly halved spatially. The convolutional layer in the last downsampling block has kernel size
3, and is padded by one more zero on each boundary to guarantee the output feature is exactly halved spatially.
The upsampling stage, containing six upsampling blocks, is a mirror of the downsampling stage. Each upsampling
block accepts the output of its preceding upsampling block and the output of a previous downsampling block
with the same spatial size. In each upsampling block, it first upsamples the feature from its preceding upsampling
block by a factor of two and applies one convolutional layer (with kernel size 5, stride 1) combined with one
batch normalization and Leaky ReLU to this upsampled feature. Then it concatenates this upsampled feature with
the feature from previous downsampling block. After the upsampling stage, three branches are created on top of
the outputs of the last three upsampling blocks, respectively. All branches are passed through one convolutional
layers with kernel size 5, stride 1, and then upsampled to the same spatial resolution as the output image. Then
these three branches are added together to obtain the final denoised prediction.

The resulting denoiser is then tested on experimental data. In Fig. ??, for consistent visualization, we convert
the denoised 2D image back into the 3D volume with depth extracted from maximum intensity projection of the
F-K and Phasor method. We find that such a learned denoiser does improve reconstruction quality, especially for
the Phasor reconstructions. Specifically, the post-filtering approach helps to suppress background noise. However,
the learned denoiser is not semantic-aware in contrast to the proposed method and struggles to unmix signal
from low-frequency artefacts and noise. This results in the suppression of object details along with noise. For
example the low-intensity statue in the far back of the complex scene is removed by the post-filtering denoiser,
and object geometry of the bike scene are missing after denoising the F-K and Phasor estimates.

1.5 Additional Non-Confocal Reconstructions
While the LCT and F-K methods require confocal data [O’Toole et al. 2018], and, as such, rely on a conversion
process for non-confocal data, the Phasor propagationmethods [Liu et al. 2020, 2019] directly support non-confocal
data. Our feature propagation framework provides a flexible approach to these input setup configurations without
the need for conversion. It naturally generalizes from confocal data to non-confocal setups by switching or fully
learning the feature propagation unit Ft→s . As such, the method also supports unknown setup configurations.
We have implemented propagation methods relying on confocal data, non-confocal setups, and fully learned
feature propagation networks as described in the main draft.

For completeness, we provide additional results on non-confocal experimental measurements provided by [Liu
et al. 2020, 2019]. As in the main draft, our model is trained on the synthetic bike dataset only and we find that it
well generalized to real captures for both non-confocal and confocal setups. As shown in Fig. ??, we successfully
reconstruct the details of the shelf, achieving results comparable with the fast Phasor propagation method [Liu
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Fig. 3. Additional Non-Confocal Reconstruction Comparisons with Measurements from [Liu et al. 2020, 2019].
Compared to the fast Phasor propagation method [Liu et al. 2020], the proposed model, trained only on synthetic bike
dataset, recovers NLOS images with comparable details and substantially reduced reconstruction artefacts in the background.
In particular, the proposed model is able to reconstruct details of the shelf scenes with higher-order multi-path contributions
beyond the third-bounce transport simulated in the training data for ourmodel.We use the same color scheme for visualization
as [Liu et al. 2020].

Table 1. Transient Rendering Time ComparisonWhile the method from Iseringhausen and Hullin [Iseringhausen and
Hullin 2020] requires a second of rendering time for scenes that have more than a few hundreds of triangle primitives, the
proposed rasterization-based rendering method renders both simple and complex scenes at real-time rates, which is 30×
faster than [Iseringhausen and Hullin 2020]. Our simulation dataset contains scenes shown in Fig. 6 in the main paper with
52081 vertices and 200018 faces, where only the proposed method achieves real-time rates.

Scene Complexity 128×128 quads 16×16 quads 4×4 quads
Jarabo et al. [Jarabo and Arellano 2018; Jarabo et al. 2014] 21.64s 19.91s 18.94s
Pediredla et al. [Pediredla et al. 2019] 26.2s 25.8s 25.5s
Iseringhausen and Hullin [Iseringhausen and Hullin 2020] 1032.2ms 19.02ms 5.44ms
Proposed 26.90ms 24.06ms 23.19ms

et al. 2020]. For reference, we run the the MATLAB code provided by [Liu et al. 2020] on a general-purpose CPU
with a runtime of 3 seconds on our desktop machine.

Note that our model is trained entirely on synthetic data with three-bounce light propagation only, while
we test our model on the complex shelf examples with higher-order indirect path contributions. Note that our
target reconstruction volumes do not cover the postitions of the rear walls in the scenes from [Liu et al. 2020,
2019]. Overall, we demonstrate that the proposed method does not suffer from overfitting with our three-bounce
training dataset, which we attribute to the transient measurements being dominated by third bounce returns.

2 ADDITIONAL TRANSIENT RENDERING COMPARISONS
Compared to multi-path ray tracing-based transient renderers, for the mesh shown in Fig. 5 of the main paper,
the method from Jarabo et al. [2018; 2014] takes 23 seconds to render a transient image with the same settings as
ours, while the method of Pediredla et al. [2019] takes about 26 seconds for our setting.
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Fig. 4. Architecture details of the feature extraction network and feature abstraction network. In the table, “conv-k(a)-s(b)-
p(c)-LReLU” represents a convolution layer with an a × a kernel window, using stride b, padded c values on the boundary by
replication, followed by a Leaky ReLU (α = 0.2) activation function.

Feature Extraction Network

Layer Name Type Input Name Channels Output Size
Input1 Transient Image 3 (512, 256,256,3)
down1 conv-k3-s2-p1-LReLU Input1 3 (256,128,128,3)
down2 conv-k3-s2-p1-LReLU Input1 3 (256,128,128,3)
res1-1 conv-k3-s1-p1-LReLU down2 3 (256,128,128,3)
res1-2 conv-k3-s1-p1 res1-1 3 (256,128,128,3)
res2-1 conv-k3-s1-p1-LReLU res1-2 3 (256,128,128,3)
res2-2 conv-k3-s1-p1 res2-1 3 (256,128,128,3)
concat1 concat (down1, res2-2) 6 (256,128,128,6)

Feature Abstraction Network

Layer Name Type Input Name Channels Output Size
Input2 Propagated Feature 6 (256,128,128,6)
down2 conv-k3-s1-p1 Input2 6 (256,128,128,6)

While these methods offer not alternative to the proposed transient renderer, they do simulate higher-order
bounces beyond the third bounce. The very recent work from Iseringhausen and Hullin [Iseringhausen and
Hullin 2020] and Tsai et al. [Tsai et al. 2019] explore efficient methods for three-bounce transient rendering.
The method from Iseringhausen and Hullin achieves real-time runtimes for simple scenes with less than a few
hundred primitives, but requires seconds of rendering time for more complex scenes. We list rendering runtime
comparisons in Table. ??. Specifically, their method takes 1032.2 ms to 128×128 quads into a 128×128 ×192
transient measurement. For the same setting, the proposed method takes only 26.90 ms to render the same mesh
into a 256×256×600 transient measurement. While [Iseringhausen and Hullin 2020] is sensitive to the quads
numbers, our rasterization-based OpenGL rendering framework supports models with large number of vertices
and faces, as shown in Fig. 6 in the main paper, with 52081 vertices and 200018 faces.

The method from Tsai et al. [Tsai et al. 2019] does not present an alternative to the proposed approach. While
their approach gradually renders path contributions intertwined with the optimization, rendering 64×64×1200
transient measurement for scenes of comparable complexity to the proposed dataset alone takes tens of minutes,
while intertwined with the optimization, it requires more than two hours on a 24-core workstation machine.

3 LEARNED NLOS SCENE REPRESENTATIONS
In this section, we provide additional detail on the proposed network architecture and design choices.

3.1 Spatio-Temporal Feature Extraction
For an RGB transient image with 512 time bins and a spatial resolution of 256 × 256, an input a tensor of
size (512, 256, 256, 3) is fed into the feature extraction network, which immediately applies a convolutional
downsampling block. The downsampling block is composed of two branches. The first branch contains one
convolutional layer, and the second branch includes another convolutional layer followed by one ResNet block [He
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et al. 2016] to refine the downsampled features. Each ResNet block contains two convolutional layers, interlaced
with one LeakyReLU layer. All convolutional layers have kernel size 3, stride 1, and three output channels (limited
by our training hardware memory), except for the first convolutional layer of both branches. These first layers
have stride 2 spatially and temporally to immediately compress features in the spatio-temporal domain. The
outputs of the two branches are concatenated along the channels, resulting in a final extracted feature of size
(256, 128, 128, 6), i.e. 4× smaller in size than the input raw data. Please refer to Fig. ?? for a full architecture
description.

3.2 Feature Abstraction
To further abstract and complete hidden scene information, we process the propagated feature the previous
stage with an additional volumetric embedding block. In particular, after feature propagation, the volumetric
representation is passed through a 3D convolutional layer with kernel size 3, stride 1, and output channel number
as 6 without bias parameter. Instead of opting for a larger ResNet block, we initialize the weights such that its
output is identical to its input when the training starts. This feature abstraction block is used to further finetune
the encoded feature representation before using it for reconstruction or recognition. The output of this block is
the final learned volumetric feature representation. Please refer to Fig. ?? for a full architecture description.

3.3 Image and Depth Rendering Network
For completeness, we also describe in detail the architecture for the image and depth rendering network. Please
refer to Fig. ?? and Fig. ?? for a full architecture description of image rendering network and depth rendering
network, respectively.

4 NETWORK TRAINING DETAILS
As we reason over full transient images of resolution (512, 256, 256, 3), translating to input tensors of size ≈

400 Mb without compression, training NLOS networks is challenging compared to learned methods that reason
on 2D images with one to two orders of magnitude reduced memory requirements on the input representation.
Although we tailor our network to the NLOS tasks, learning from the large corpus of simulated training data still
takes on the order of weeks with modern GPU hardware. During training, we set the batch size to be one and
use Adam as the optimization method with β1 = 0.5, β2 = 0.999 and learning rate 0.0002. We train for 50 epochs
on the motorbike data set containing ≈ 6000 training examples. This takes 7 days to reach full convergence on
a single NVIDIA TITAN X GPU. We envision dedicated training solutions, such as the NVIDIA DGX training
machines, or multi-GPU training to expedite training time for experimentation in the future.
Aiding the stability of the training of all networks, we also found that initializing the first downsampling

convolutional layer in the feature extraction network as an average pooling layer over the temporal domain
aids the convergence of the network. Intuitively, this allows the network to extract features from downsampled
temporal histograms before tailoring the features to the full-resolution details. To further improve stability, we
have also experimented with progressive growing [Karras et al. 2017] but did not find substantial benefits for our
network architecture.

5 ADDITIONAL RGB, DEPTH AND MULTI-VIEW NLOS IMAGING RESULTS
In this section, we provide additional results for RGB, depth and multi-view predictions. We first show the RGB
prediction on car and bike class in Fig. ?? and Fig. ??. The proposed model generalizes well to unseen examples
from the same class. Next, by adding a depth rendering network and multi-view supervision, the proposed method
allows for joint image and depth reconstruction from multiple viewpoints in an end-to-end fashion. As illustrated
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Fig. 6. Architecture details of our image rendering network. In the table, “conv-k(a)-s(b)-p(c)-LReLU” represents a convolution
layer with an a × a kernel window, using stride b, padded c values on the boundary by replication, followed by a Leaky ReLU
(α = 0.2) activation function.

Image Rendering Network

Layer Name Type Input Name Channels Output Size
Input3 (down2) Learned Volumetric Feature 6 (256,128,128,6)
project-index argmax down2 6 (256, 128,128,6)
project maxproject down2, project-index 6 (128,128,6)
concat2 concat (project, project-index) 12 (128,128, 12)
slice slice concat2 4 (128, 128,4)
up1 upsample slice 3 (256,256, 3)
same1 conv-k1-s1-p1-LReLU up1 3 (256,256,3)
same2 conv-k3-s1-p1-LReLU Input3 3 (128,128,3)
res3-1 conv-k3-s1-p1-LReLU same2 3 (128,128,3)
res3-2 conv-k3-s1-p1 res3-1 3 (128,128,3)
res4-1 conv-k3-s1-p1-LReLU res3-2 3 (128,128,3)
res4-2 conv-k3-s1-p1 res4-1 3 (128,128,3)
up2 upsample res4-2 3 (256,256, 3)
concat3 concat (up1, up2) 6 (256,256, 6)
same3 conv-k3-s1-p1-LReLU concat3 6 (256,256, 6)
res5-1 conv-k3-s1-p1-LReLU same3 6 (256,256, 6)
res5-2 conv-k3-s1-p1 res5-1 6 (256,256, 6)
res6-1 conv-k3-s1-p1-LReLU res5-2 6 (256,256, 6)
res6-2 conv-k3-s1-p1 res6-1 6 (256,256, 6)
same4 conv-k3-s1-p1-LReLU res6-2 3 (256,256, 3)
output add same1, same4 3 (256,256,3)

in Fig.??, the model is able to faithfully reconstruct RGB images and depth maps from multiple views for a variety
of objects.

6 ADDITIONAL OBJECT DETECTION RESULTS

Table 2. Full 2D Detection IoU Comparison. We report average IoU across all 14 classes and IoU for each individual class.

Detector Avg. IoU Airplane Bench Cabinet Chair Display Lamp Speaker Firearm Sofa Table Phone Watercraft Car Bike

End-to-end 0.73 0.65 0.67 0.80 0.75 0.72 0.69 0.73 0.67 0.73 0.66 0.81 0.65 0.74 0.74
Sequential-Ours 0.69 0.62 0.63 0.79 0.75 0.72 0.66 0.74 0.64 0.70 0.66 0.79 0.61 0.73 0.68
Sequential-F-K 0.67 0.60 0.63 0.78 0.70 0.70 0.62 0.73 0.65 0.68 0.64 0.75 0.63 0.71 0.69

In this section, we provide additional qualitative and quantitative evaluation of the proposed end-to-end
detection model. The data set for detection is created by merging the multi-class data set described in the main
paper (containing 13 classes) and 500 additional motorbike examples randomly sampled from the motorbike
data set. Therefore, the data set in total includes the following 14 classes: airplane, bench, cabinet, chair, display,
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Fig. 8. Architecture details of depth rendering network. In the table, “conv-k(a)-s(b)-p(c)-LReLU” represents a convolution
layer with an a × a kernel window, using stride b, padded c values on the boundary by replication, followed by a Leaky ReLU
(α = 0.2) activation function.

Depth Rendering Network

Layer Name Type Input Name Channels Output Size
Input3 (down2) Learned Volumetric Feature 6 (256,128,128,6)
project-index argmax down2 6 (256, 128,128,6)
project maxproject down2, project-index 6 (128,128,6)
concat2 concat (project, project-index) 12 (128,128, 12)
slice slice concat2 4 (128, 128,4)
up1 upsample slice 1 (256,256, 1)
same1 conv-k1-s1-p1-LReLU up1 3 (256,256,3)
same2 conv-k3-s1-p1-LReLU Input3 3 (128,128,3)
res3-1 conv-k3-s1-p1-LReLU same2 3 (128,128,3)
res3-2 conv-k3-s1-p1 res3-1 3 (128,128,3)
res4-1 conv-k3-s1-p1-LReLU res3-2 3 (128,128,3)
res4-2 conv-k3-s1-p1 res4-1 3 (128,128,3)
up2 upsample res4-2 3 (256,256, 3)
concat3 concat (up1, up2) 6 (256,256, 6)
same3 conv-k3-s1-p1-LReLU concat3 6 (256,256, 6)
res5-1 conv-k3-s1-p1-LReLU same3 6 (256,256, 6)
res5-2 conv-k3-s1-p1 res5-1 6 (256,256, 6)
res6-1 conv-k3-s1-p1-LReLU res5-2 6 (256,256, 6)
res6-2 conv-k3-s1-p1 res6-1 6 (256,256, 6)
same4 conv-k3-s1-p1-LReLU res6-2 1 (256,256, 1)
output add same1, same4 1 (256,256,1)

Fig. 10. Recovery with Intra-Class Variation for the Car Class. We visualize test outputs from the proposed method
trained on car for unseen test samples of the car class with high variety of shape and color across the data set.
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Fig. 11. Recovery with Intra-Class Variation for the Bike Class.We visualize test outputs from the proposed method
trained on motorbike for unseen test samples of the motorbike class with high variety of shape and color across the data set.
The proposed model is able to reconstruct motorbikes with thin structures and various poses. Please zoom into electronic
version for details.

lamp, speaker, firearm, sofa, table, phone, watercraft, car and bike. In Tab. ??, we show a comparison to two
baseline methods. While the detection head of the end-to-end method accepts an intermediate learned feature (a
collapsed 2D feature combined with the index map used for 3D-to-2D projection) as input, the two baselines
accept concatenated image and depth map rendered from the proposed reconstruction method (Sequential-Ours)
or from F-K (Sequential-Ours). Detectors of the three compared methods all share the similar structure –the
network consists of four convolutional layers with stride two and kernel size three, followed by an average pooling
layer that extracts a one-dimensional feature of length 512 and a fully-connected layer that predicts five values.
The only difference among the three detectors is in the input channel number of the first convolutional layer
in the detector to accommodate various input sizes and our feature representation instead of the intermediary
image representation of the sequential methods. Each method is evaluated on the average IoU (Intersection over
Union) across all 14 classes and IoU for each individual class. We can see that while all methods struggle on
classes whose rendered images are too small (e.g., firearm), too big (e.g., cabinet), or too dark (e.g., airplane), the
proposed end-to-end detection method outperforms the baselines on almost all classes.

We also visualize additional predictions of the proposed model on our test dataset in Fig. ??. The visualization
shows that the data set includes examples with various color, shape, and pose. And the predictions (green boxes)
validate that our model predicts for a wide range of bounding box size and aspect ratio. The proposed model
is able to learn meaningful features that facilitate downstream tasks such as detection. We hope that in the
future, once more rich experimental NLOS datasets become available, researchers will adopt our detection and
classification networks as building blocks for complex NLOS scene understanding tasks.
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Fig. 12. Multi-View NLOS RBG-D Recovery. We show unseen test examples from the NLOS RGB-D and multi-view
model trained on the multi-class data set. The proposed model is able to render both intensity and depth map for all thirteen
classes from different views. It learns to robustly recover NLOS RGB and depth across all classes with varying topologies and
levels of detail.
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Fig. 13. Additional qualitative results of the end-to-end detection model on our multi-class data set. The model predicts
accurate bounding boxes for a wide range of object sizes and classes.
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