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Fig. 1. We devise a method for learning feature embeddings tailored to non-line-of-sight reconstruction and object recognition. The proposed learned inverse
method is supervised purely using synthetic transient image data (top row). Trained on a synthetic scenes containing only a single object type (“motorbike”)
from ShapeNet [2015], the trained model generalizes from synthetic data (bottom left) to unseen classes of measured experimental data (bottom right). Note
that the proposed model recovers geometry not present in existing methods, such as the reflective styrofoam parts of the mannequin head.

Objects obscured by occluders are considered lost in the images acquired
by conventional camera systems, prohibiting both visualization and under-
standing of such hidden objects. Non-line-of-sight methods (NLOS) aim at
recovering information about hidden scenes, which could help make medical
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imaging less invasive, improve the safety of autonomous vehicles, and poten-
tially enable capturing unprecedented high-definition RGB-D data sets that
include geometry beyond the directly visible parts. Recent NLOS methods
have demonstrated scene recovery from time-resolved pulse-illuminated
measurements encoding occluded objects as faint indirect reflections. Unfor-
tunately, these systems are fundamentally limited by the quartic intensity
fall-off for diffuse scenes. With laser illumination limited by eye-safety limits,
recovery algorithms must tackle this challenge by incorporating scene priors.
However, existing NLOS reconstruction algorithms do not facilitate learning
scene priors. Even if they did, datasets that allow for such supervision do not
exist, and successful encoder-decoder networks and generative adversarial
networks fail for real-world NLOS data. In this work, we close this gap by
learning hidden scene feature representations tailored to both reconstruc-
tion and recognition tasks such as classification or object detection, while
still relying on physical models at the feature level. We overcome the lack
of real training data with a generalizable architecture that can be trained in
simulation. We learn the differentiable scene representation jointly with the
reconstruction task using a differentiable transient renderer in the objective,
and demonstrate that it generalizes to unseen classes and unseen real-world
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scenes, unlike existing encoder-decoder architectures and generative adver-
sarial networks. The proposed method allows for end-to-end training for
different NLOS tasks, such as image reconstruction, classification, and object
detection, while being memory-efficient and running at real-time rates. We
demonstrate hidden view synthesis, RGB-D reconstruction, classification, and
object detection in the hidden scene in an end-to-end fashion.

CCS Concepts: • Computing methodologies → Computational pho-
tography.

Additional Key Words and Phrases: computational photography, time-of-
flight imaging, non-line-of-sight imaging, differentiable physics, deep learn-
ing
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1 INTRODUCTION
Conventional sensor systems capture objects in their direct line
of sight, limiting downstream display and scene understanding
methods to the visible parts of the scene. Non-line-of-sight (NLOS)
methods, in contrast, aim at recovering information about occluded
objects by analyzing their indirect reflections or shadows on surfaces
that are in the line of sight of the detector. Scene understanding
of occluded objects may enable unprecedented applications across
domains, including remote sensing, medical imaging, and industrial
machine vision, and it could help to make autonomous driving safer
by detecting all objects in the vicinity of a vehicle and not only the
directly visible ones.
NLOS imaging and scene understanding is challenging because

of two fundamental limitations of the measurement formation pro-
cess. First, there is an inherent low-pass angular filter induced by
imaging diffuse indirect reflections of diffuse scene surfaces. Second,
the intensity of these indirect reflections decreases quartically with
distance to the visible relay surface. To tackle the lack of angular
resolution, a number of NLOS approaches have been described over
the last few years that temporally probe the light-transport in the
scene, thereby unmixing light path contributions by their optical
path length [Abramson 1978; Kirmani et al. 2009; Naik et al. 2011;
Pandharkar et al. 2011]. This provides ameans for increasing angular
resolution, at the expense of needing high effective temporal resolu-
tion (on the order of picoseconds). To acquire temporally resolved
images of light transport, the most successful methods directly sam-
ple the temporal impulse response of the scene by recording the
temporal echoes of laser pulses [Velten et al. 2012; Pandharkar et al.
2011; Gupta et al. 2012; Buttafava et al. 2015; Tsai et al. 2017; Arel-
lano et al. 2017; O’Toole et al. 2018a]. However, while successfully
recovering angular resolution, these methods unfortunately do not
solve the second challenge of the low signal present in the indirect il-
lumination. While some systems rely on engineered retro-reflective
materials [O’Toole et al. 2018a; Chen et al. 2019; Lindell et al. 2019b],
which are rare in realistic scenes, general-purpose methods often
resort to increasing illumination power, exceeding the eye-safety
limits for a Class 1 laser (e.g. Velodyne HDL-64E) by a factor of

1000 [Lindell et al. 2019b]. As a result, the underlying inverse prob-
lem is fundamentally limited by the low-signal component of the
temporally resolved measurements.

NLOS reconstruction methods must cope with this ill-posedness
and noise sensitivity by incorporating accurate forward models and
image priors. While forward models have been proposed that can
successfully handle different surface reflection types [Liu et al. 2019;
Lindell et al. 2019b; O’Toole et al. 2018b] and occlusions in the hid-
den volume [Heide et al. 2019], existing methods incorporate only
limited scene priors. Specifically, previous inverse filtering methods
either support no scene priors [Liu et al. 2019; Lindell et al. 2019b],
are limited to non-negativity or sparsity priors with iterative opti-
mization at the cost of more than 100 min of recovery time [O’Toole
et al. 2018b] (LCT+TV variant), or they explicitly enforce scene priors
as surface representations [Pediredla et al. 2017; Tsai et al. 2019].
As such, existing methods do not allow for learning rich scene priors
from scene datasets, and existing vanilla image-to-image mapping
networks fail for non-local NLOS reconstruction problems as we
show in this work. Moreover, even if existing methods facilitated
learning priors, large real or synthetic datasets that allow for super-
vised learning do not exist. The lack of datasets and trainable NLOS
reconstruction methods also makes it challenging to learn recogni-
tion tasks such as classification or detection of objects in the hidden
scene components in an end-to-end fashion, limiting existing meth-
ods [Caramazza et al. 2018a] to captured data of a single class with
baked-in setup geometry.
In this work, we close the gap between learned methods, which

allow for rich priors, and physically motivated reconstruction meth-
ods. We propose to learn hidden scene feature representations tai-
lored to both NLOS reconstruction and recognition directly from the
raw transient images. Instead of aggregating transient intensities,
and explicitly enforcing hidden albedo constraints, we base our sys-
tem on learned deep feature maps that are extracted from the input
transients, propagated to the hidden scene volume as a learnable
low-resolution 3D feature map, and used directly by downstream
rendering and recognition tasks. This strategy allows us to overcome
many of the weaknesses of traditional methods. First, the mapping
is trained to be insensitive to surface reflectance and occlusion.
Second, the propagation from 2D to 3D can proceed via a learned
module, or can exploit existing physical models (applied to feature
maps instead of intensity) without inheriting their limitations. The
3D feature maps can be used to enforce multi-view and depth con-
sistency, while their projections back into 2D result in high-quality
images via a rendering network. Finally, the whole process can run
at real-time rates, as intermediate 3D feature representation is more
compressed than the input data.

We supervise this differentiable scene representation using simu-
lated transient renderings. To generate a large training data corpus
for training, we propose a novel highly-efficient transient rendering
method relying on rasterization hardware.
Although trained in simulation, the proposed reconstruction

method generalizes well to real data, in contrast to existing encoder-
decoder or generative adversarial networks. It allows for high-resolution
reconstructions from time-resolved transient measurements at real-
time rates. We validate that the proposed method naturally allows
us to learn diverse downstream NLOS tasks such as hidden view
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synthesis, RGB-D reconstruction, classification, and object detection
in the hidden volume in an end-to-end fashion.
In particular, we make the following contributions:

• We introduce a method for learning feature embeddings tai-
lored to non-line-of-sight reconstruction, as well as specific
imaging and downstream classification and object detection
tasks. We extract these sparse hidden features from simulated
transient images, using learned feature extraction blocks and
feature propagation units that can leverage physical models.

• The proposed learned feature representation natively incor-
porates 3D scene structure, such as occlusion and multi-view
consistency. It learns to encode geometry and surface prop-
erties in a scene- and task-dependent manner, with priors
learned in an end-to-end fashion.

• We train and analyze the proposed method in simulation and
validate that the method outperforms state-of-the-art recon-
struction methods by more than 5 dB in PSNR for RGB-D
image recovery, evaluated on more than 600 scenes, while
being memory-efficient and allowing for real-time reconstruc-
tion rates.

• We assess the proposed method on a dataset of experimental
data, validating that the approach generalizes and outper-
forms recent volumetric reconstruction methods across a
variety of scenes. All datasets, models, and code for rendering
and training of the proposed models will be published.

1.1 Overview of Limitations
The proposed deep reconstruction method requires a large train-
ing corpus to represent objects with arbitrary shapes, orientations,
locations and reflectance; at the same time, unfortunately, only a
dozen real-world transient measurements are available. Although
we tackle this issue by training in simulation, without sacrificing
generalization, we rely on representative 3D scene datasets, such
as ShapeNet [Chang et al. 2015], and inherit their limitations in
diversity and realism, e.g., including various surface reflectance
types. Also as a result of existing shape dataset limitations, semantic
decomposition and analysis of hidden 3D scenes that are complex
is out of the scope of this work, but we anticipate that this is a
promising avenue for future work.

2 RELATED WORK
We review prior art most related to our contributions, below.

Transient Imaging. Kirmani et al. [2009] first proposed the con-
cept of recovering “hidden” objects outside a camera’s direct line
of sight, using temporally resolved light transport measurements
in which short pulses of light are captured “in flight” before the
global transport reaches steady state. These transient measurements
are the temporal impulse responses of light transport in the scene.
Abramson [1978] first demonstrated a holographic capture system
for transient imaging, and Velten et al. [2013] showed the first ex-
perimental non-line-of-sight imaging results using a femto-second
laser and streak camera system. The first successful reconstruction
method is filtered backprojection which propagates and aggregates

time-resolved intensity measurements back into in the occluded
volume, followed by a Laplacian filter [Velten et al. 2012], an ap-
proach extended and made efficient in recent years [Laurenzis and
Velten 2014; Arellano et al. 2017; Jarabo et al. 2017]. Since these
seminal works, a growing body of work has been exploring tran-
sient imaging with a focus on enabling improved non-line-of-sight
imaging [Pandharkar et al. 2011; Naik et al. 2011; Wu et al. 2012;
Gupta et al. 2012; Heide et al. 2014, 2013; Buttafava et al. 2015].

Impulse Non-Line-of-Sight Sensing and Imaging. A growing body
of work explores optical NLOS imaging techniques [Pandharkar
et al. 2011; Velten et al. 2012; Gupta et al. 2012; Kadambi et al. 2016;
O’Toole et al. 2018a; Tsai et al. 2017; Arellano et al. 2017; Pediredla
et al. 2017; O’Toole et al. 2018b; Xu et al. 2018; Liu et al. 2019].
Following Kirmani et al. [2009], who first proposed the concept
of recovering occluded objects from time-resolved light transport,
these methods directly sample the temporal impulse response of a
scene by sending out pulses of light and capturing their response
using detectors with high temporal precision of < 10 ps, during
which a pulse travels a distance of 3mm. While early work relies
on costly and complicated streak camera setups [Velten et al. 2012,
2013], a recent line of work uses single photon avalanche diodes
(SPADs) [Buttafava et al. 2015; O’Toole et al. 2018b; Liu et al. 2019,
2020]. Although SPAD sensors offer comparable time resolution of
under 10 ps [Nolet et al. 2018], existing detectors with large active
area are challenging to realize as arrays [Parmesan et al. 2014], re-
quiring point-by-point scanning [O’Toole et al. 2018b; Liu et al. 2019,
2020] similar to scanning LIDAR systems. These recent scanning-
based systems achieve the highest resolution NLOS reconstructions
and transient image resolutions. Parallel to our work, [Chopite et al.
2020] propose to directly train an encoder-decoder network to learn
NLOS reconstruction from synthetic transients. Their results indi-
cate that existing encoder-decoder networks generalize poorly to
real data. In this work, we depart from such architectures and learn
feature embeddings that allow us to close the domain gap.

Modulated and Coherent Non-Line-of-Sight-Imaging. Correlation-
based time-of-flight sensors have been proposed as an alternative
to impulse-based acquisition [Heide et al. 2013; Kadambi et al. 2013;
Heide et al. 2014; Kadambi et al. 2016], encoding travel-time indi-
rectly in phase measurements. A recent line of work [Marco et al.
2017; Su et al. 2018; Guo et al. 2018] relies on synthetic data for
training depth estimation networks. Although these works aim to
recover the direct reflection, while this work focuses on indirect
bounces, they demonstrate the potential of learning inverse models
for complex light transport in the scene.

Katz et al. [2012, 2014] demonstrate that correlations in the carrier
wave itself can be used to realize fast single shot NLOS imaging
that is, however, limited to scenes at microsopic scales [Katz et al.
2014]. Recently, [Metzler et al. 2020] demonstrate a correlography
approach to NLOS imaging. While this approach achieves high
spatial resolution of 300 µm it is also limited to a single sparse object
and small standoff distances of 1 m. Unfortunately, recent acoustic
methods [Lindell et al. 2019a] are currently limited to meter-sized
lab scenes and minutes of acquisition time.
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Non-Line-of-Sight Tracking and Classification. Several recentworks
use conventional intensity images for NLOS tracking and localiza-
tion [Klein et al. 2016; Caramazza et al. 2018a; Chan et al. 2017;
Bouman et al. 2017; Chen et al. 2019]. The ill-posedness of the un-
derlying inverse problem limits these methods to localization with
highly reflective targets [Bouman et al. 2017; Chen et al. 2019], sparse
dark background, scenes with additional occluders present [Bouman
et al. 2017; Saunders et al. 2019], or a single object class [Caramazza
et al. 2018a]. Using radar sensors, recently, [Scheiner et al. 2020]
achieved NLOS detection and tracking of multiple object classes at
large stand-off distances of more than 20 m in automotive outdoor
scenarios.

Learning Multiview Image Synthesis. A growing body of work
explores learning multiview image synthesis from sparsely sampled
images of a given 3D scene. Such existing methods learn scene
representations [Tatarchenko et al. 2015; Zhou et al. 2016; Sitzmann
et al. 2019a; Olszewski et al. 2019; Lombardi et al. 2019; Sitzmann
et al. 2019b; Mildenhall et al. 2020] from input data and generate new
views penalized by re-rendering losses. While several earlier works
focus on representing the scene in the latent space [Tatarchenko
et al. 2015; Zhou et al. 2016], recently, researchers have become
interested in explicitly encoding the scene as a 3D volumetric feature
block [Sitzmann et al. 2019a; Olszewski et al. 2019]. Moreover, ray
tracing and ray marching technique can also be added [Lombardi
et al. 2019; Mildenhall et al. 2020] to learn how to deal with occlusion,
which result in much more high resolution reconstruction. All of
these techniques have in common that they naturally exploit multi-
view geometry and scene constraints. In this work, we also reason
on volumetric feature spaces. However, instead of extracting such
features directly from multiview scene photographs, we extract
them from transient images. We spatially transform the transient
features to the hidden scene volume, which we only then map
to rendered images of the unknown scene. Moreover, instead of
overfitting models to a single (or parameterized) scene for view
interpolation [Mildenhall et al. 2020] (note that overfitting to the
scene can be intended for multiview reconstruction methods), we
introduce an inverse method that does not overfit and recovers
occluded information for transient input data from unseen scenes –
generalizing to real data although trained in simulation only.

3 OBSERVATION MODEL
NLOS methods recover information about occluded objects outside
the direct line of sight from time-resolved global light transport
measurements of third-order reflections. Specifically, a small patch
of a diffuse relay wall in the direct line of sight of the detector is
illuminated with a short laser pulse. The light scatters off this patch
to the hidden object, which reflects some of it back to the visible wall,
where it gets recorded after a third diffuse reflection to the detector,
see Fig. 2. Without loss of generality, we assume a setup in which a
single laser spot at the center of the relay wall, at coordinates (0, 0),
is illuminated and the indirect reflections are sampled at positions
(x ′,y′) on the visible relay wall. The derived image formation of this
NLOS setup generalizes to both non-coaxial setups with multiple
laser points as well as co-axial setups.

Beam
Steering

Occluded 
Scene

Diffuse 
Relay Wall

Short-Pulsed 
RGB Laser

Time-resolved
Detector

x’

y’

(0,0)

Fig. 2. Temporally Resolved NLOS Acquisition. A laser pulse is pro-
jected at the center of a diffuse wall, and the resulting time-resolved direct
and indirect light transport is sampled at points (x ′, y′).

The time-resolved incident photon flux, including the indirect and
direct global illumination (direct only for the center of relay wall),
is recorded for every sample position as a transient observation τ ,
resulting in a 3D spatio-temporal measurement cube, i.e. a video
of the pulse traveling through the scene at picosecond resolution.
Fig. 1 shows an example of such a transient measurement cube.

Assuming the visible wall geometry to be known, e.g. from first-
bounce direct time-of-flight measurements or (active) stereo meth-
ods, we can ignore the direct bounce, either by discarding sam-
ples around the center light position or by employing gating hard-
ware [Liu et al. 2019; Lindell et al. 2019b], resulting in the following
observation model

τ
(
x ′,y′, t

)
=

∫∫∫
ρ (x,y, z) f

(
ω(0,0,0) )(x ,y,z), ω(x ,y,z) )(x ′,y′,0)

)
γ (0, 0, x,y, z) γ

(
x ′,y′, x,y, z

)
δ

(√
x 2+y2+z2+

√
(x ′−x )2+(y′−y)2+z2−tc

)
dx dy dz,

(1)
with the time dirac delta function δ (·) converting time t to the travel
distance r = tc , with c as the speed of light. Here, the geometry term
γ (·)models mutual visibility, foreshorting due to surface orientation
n of the hidden surface, and intensity falloff as

γ
(
x ′,y′, x,y, z

)
=

(
ω(x ′,y′,0) )(x ,y,z) · n (x,y, z)

)
· v(x ′,y′,0) )(x ,y,z)√

(x ′ − x)2 + (y′ − y)2 + z2
,

(2)
where the orientationωpi )po = (po−pi )/∥po−pi ∥ is the normalized
direction between the two input arguments. Adopting the same
notation, the visibility term vpi→po ∈ [0, 1] models the visibility of
a path between the two input patches at pi and po in the hidden
scene. For partial occlusions, we adopt the continuous notation
from [Heide et al. 2019]. We model the bidirectional reflectance
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distribution function (BRDF) f from forward model Eq. (1) as

f (ωi ,ωo ) = fd (ωi ,ωo ) + fs (ωi ,ωo ) + fr (ωi ,ωo ) . (3)

Here, the diffuse component fd models diffuse scattering, which are
almost directionally constant. The specular component fs represents
specular highlights, i.e., mirror-like reflections with a specular lobe.
Although these specular components can be used for large wall
geometries [Chen et al. 2019], diffuse reflections typically dominate
the transient image for small relay wall geometries and long stand-
off distances. The retroreflective BRDF component fr represents a
sharp retroreflective lobe around ωi = ωo = ω, which is present in
a few engineered surface types [O’Toole et al. 2018b; Lindell et al.
2019b; Chen et al. 2019]. Note that we only measure this retrore-
flective component for the light source position x ′ = 0,y′ = 0. The
confocal scanning setup [O’Toole et al. 2018b; Lindell et al. 2019b]
is a variation of the proposed model for this point, where the light
source is now moved along with the sampling position x ′,y′ to be
able to sample this retroreflective BRDF component at every sam-
pling position. We model the unknown, hidden scene albedo as a
directionally constant but spatially-varying function ρ (x,y, z).

Note that the only assumption that the forward model from Eq. (1)
makes is that the indirectly reflected light from the occluded scene
scatters only once in the occluded scene.

3.1 Detector Model
Although our method is not limited to a specific transient detec-
tor type, the results in this paper assume that transient images are
captured using a single photon avalanche diode (SPAD). SPAD de-
tectors offer high temporal resolution of under 10 ps [Nolet et al.
2018], and offer the promise of potential implementation as high-
resolution sensor arrays in CMOS technology in the future [Burri
2016]. As such, a growing body of work relies on SPAD detectors
for NLOS imaging [Buttafava et al. 2015; O’Toole et al. 2018b; Liu
et al. 2019]. Unfortunately, SPADs are not without disadvantages:
they suffer from a small active area, and their operating principle
prohibits recording subsequent photons after a given photo-electron
has generated an avalanche. While this behavior can lead to pile-up
histogram skew [Coates 1972] for the direct peak (and hence does af-
fect purely co-axial setups), the indirect reflections are in a low-flux
regime, where the probability of observing multiple photons from a
single pulse is small and, hence, pile-up can be ignored [Kirmani
et al. 2014].
We follow the forward model approach proposed by Hernan-

dez et al. [2017]. While the authors propose an extensive detector
model that also comes at high computational cost, we adopt the core
noise components from their method and model the raw transient
measurements accumulated with N pulses as

τ̃ (x ′,y′, t̃) ∼ Poisson
(
N µ

(
τ ⊗ д + s

)
(x ′,y′, t†) + N d

)
with

t† ∼ Jitter
(
t̃, σjitter

)
,

(4)
where µ > 0 is the quantum efficiency, d is the dark count rate per
time bin t̃ , and s is the ambient light per time bin. The continuous
transient image τ is convolved with a function д the laser impulse
response. We model detector jitter as a sampling process where
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Fig. 3. Synthesis of Realistic Training Data. Top: Measurement of the
resolution chart scene from [Lindell et al. 2019b] and three transient frames.
Bottom: synthetic 3D model with digit texture placed in a virtual hidden
volume for a comparable setup (exact position of the chart was not provided)
and simulated transient frames. The proposed rasterization-based renderer
and detector noise model synthesize realistic simulated training data.

the temporal acquisition bin t† is sampled from a Jitter distribution
Jitter, which we model as a Gaussian distribution with mean t̃ and
standard deviation σjitter. Here we simplify the time jitter model
in [Hernandez et al. 2017] and ignore the exponential tail for effi-
ciency in training. We found that explicitly modeling detector jitter
instead of absorbing it in the temporal PSF, e.g., in contrast to [Heide
et al. 2018], is critical for synthetic data that generalizes. Combining
all the detected photon arrival events into a single histogram results
in a discrete Poisson-distributed random variable for each temporal
bin t̃ of the resulting transient measurement τ̃ .
We note that [Hernandez et al. 2017] also model crosstalk and

afterpulsing which we ignore. As the samples in confocal measure-
ment setups are captured individually, we do not observe cross-talk
in our experimental measurements. As the detectors used for vali-
dation in this work have an afterpulsing probability between 0.1%
and 3%, we ignore afterpulsing to make our forward model more
efficient for training with large datests. We show simulated tran-
sient frames rendered with the proposed noise model in Fig. 3 and
compare them to an experimental measurement.

3.2 Transient Rasterization
In this work, we propose a deep neural network to learn occluded
3D scene recovery. Training this network requires a large corpus of
transient training data, which does not exist. Instead of capturing
such a dataset with existing lab setups, which would mandate tens
of minutes of capture time per scene [Liu et al. 2019; O’Toole et al.
2018a], we train purely on simulated transient image data. Although
rendering approaches for steady-state indirect measurements have
been proposed [Chen et al. 2019; Tancik et al. 2018], these methods
unfortunately do not extend to time-resolved rendering, and hence
cannot be applied in our setting. Recent ray tracing methods such
as those by Jarabo et al. [2014], Jarabo and Arellano [2018], and
Pediredla et al. [2019] are also impractical, as they would require
rendering times of multiple weeks for the training data corpus used
in this work.
To tackle this challenge, we propose a highly efficient transient

renderer using rasterization hardware acceleration, extending [Chen
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Fig. 4. Fast Transient Rendering using Rasterization. (a) We decom-
pose the transient image formation process into the integral over incoming
indirect illumination. The camera pixel (x ′, y′) receives lights from direc-
tionsv1 andv2. Indirect reflections may be composed of diffuse components
(gray light lobe), specular component (green light lobe) and retro-reflective
component (orange light lobe). (b) & (c) Different light directions result in
different projections on the relay wall. We render intensity map and distance
map (from light source to object then back to the wall), and accumulate
them in a histogram to render a full transient image volume.

et al. 2019] to render transient data for arbitrary setup geometries.
As shown in Fig. 4, each camera pixel (x ′,y′) on the wall receives
photons from directions, such as v1 and v2, over the incident hemi-
sphere centered at (x ′,y′), resulting from indirect reflections of
hidden objects illuminated by the light source at (0, 0). This means
that we can rewrite Eq. (1) from an integral over the scene into an
integral over directions v on the incident hemisphere Ω

τ
(
x ′,y′, t

)
=

∫
v∈Ω

ρ
(
x ′v,y

′
v, z

′
v
)
f

(
ω(0,0,0) )(x ′

v,y′
v,z′v), −v

)
γ

(
0, 0, x ′v,y

′
v, z

′
v
)
γ

(
x ′,y′, x ′v,y

′
v, z

′
v
)

δ
(√

x ′
v
2+y′

v
2+z′v

2 + s(x ′,y′, v) − tc
)

dv,

(5)

where the scalar function s(x ′,y′, v) expresses the distance to first
intersection along the ray starting at (x ′,y′, 0) in the direction v,
and (x ′v,y′v, z′v) = (x ′,y′, 0)+ s(x ′,y′, v) ·v is that intersection point.

We evaluate this integral by sampling directions v, each of which
corresponds to a single rasterization pass. As shown in Fig. 4, al-
though a standard orthogonal view is used for direction v1 in (c),
v2 in (b) requires a sheared parallel projection, which nonetheless
is accommodated by rasterization hardware. We use OpenGL ras-
terization and use both vertex shader and fragment (pixel) shaders.
Using vertex shaders, we not only obtain an RGB intensity map for
a point light at (0, 0, 0), but are also able to use the alpha channel to
store the path length from the light source to the vertex position
and back to the pixel position. This approach also generalizes to
confocal captures [O’Toole et al. 2018a], where each pixel τ (x ′,y′, t)
is illuminated by a source shifted to position (x ′,y′, 0). We imple-
ment this setup geometry directly in the vertex shader as directional
illumination from the wall in direction v. As each wall patch maps
to a sensor measurement location, the proposed rasterization-based
method naturally scales to different uniform sampling resolutions.
Each relay wall (sensor) pixel only receives light from its ”own”
source, and, as there is no cross talk, our renderer can be used for
confocal or non-confocal setups, see Fig. 5.
The final third-bounce transient image is rendered by accumu-

lating 10000 cosine-weighted hemisphere samples, i.e., Lambertian

Table 1. Transient Rendering Time Comparisons. The multi-path ray
tracing transient renderers from [Jarabo et al. 2014; Jarabo and Arellano
2018] and [Pediredla et al. 2019] require around 20 sec to render a tran-
sient image. The three-bounce renderer from [Iseringhausen and Hullin
2020] requires one second to render scenes that have more than a few hun-
dreds of primitives. The proposed rasterization-based rendering method
renders both simple and complex scenes at real-time rates that are 30×
faster than [Iseringhausen and Hullin 2020].

Scene Complexity 128×128 quads 16×16 quads 4×4 quads

Jarabo et al. 21.64s 19.91s 18.94s
Pediredla et al. 26.2s 25.8s 25.5s
Iseringhausen and Hullin 1032.2ms 19.02ms 5.44ms

Proposed 26.90ms 24.06ms 23.19ms

importance sampling, with each intensity pixel accumulated in its
arrival time bin. We implement this process in GPU memory us-
ing CUDA programming, allowing us to render transient images
with spatial resolution of 256 × 256 and 600 time bins in 117 ms
for the mesh shown in Fig. 5 with 52081 vertices and 200018 faces.
In Table. 1, we also compare the rendering time of the proposed
renderer to the multi-path ray tracing renderers from [Jarabo et al.
2014; Jarabo and Arellano 2018], [Pediredla et al. 2019], and the
three-bounce renderer from [Iseringhausen and Hullin 2020]. The
proposed rasterization-based method outperforms existing methods
by an order of magnitude, though, similar to [Tsai et al. 2019; Isering-
hausen and Hullin 2020] it does also fail to account for higher-order
light bounces and it is not unbiased, please refer to the Supplemen-
tal Material for details. Relying on our renderer to generate a large
training dataset, we validate the resulting model on real transient
measurements that include higher-order bounces. Extending the
proposed method to additional bounces is out of scope for this work
but may be facilitated by relying on Hemi-cube [1985] rendering in
the future.

4 LEARNED NLOS SCENE REPRESENTATIONS
We propose an end-to-end approach to learn 3D representations
from transient images. An overview of the proposed method is
shown in Fig. 6. Given a transient image τ , we learn a 3D feature em-
bedding C , which allows for diverse tasks including imaging, depth
reconstruction, classification, and object detection— all learned in
an end-to-end fashion with real-time inference.

At the core of the algorithm lies a learned volumetric feature repre-
sentation of the 3D object. Instead of directly estimating volumetric
albedo and density as in existing NLOS reconstruction methods, we
learn at each voxel a latent vector that encodes shape and color in-
formation of the hidden volume. In other words, our representation
differs from voxel-albedo (or voxel-color) because the latent volu-
metric feature vectors encode shape, occlusion, normal, semantics,
etc. and not only albedo. Thinking of the learned features as gener-
alizations of phasors from radiance transients provides an intuition.
This representation is essential in making the proposed method
generalize to unseen scenes and allows for real-time runtimes with
low memory consumption. We obtain this embedding in two steps.
We first extract 2D spatio-temporal features using a convolutional
network. This step is motivated by the fact that transient images,
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t=1.4m/c t=1.6m/c t=1.8m/c t=2.0m/c t=2.2m/c

Scene Rendering with Pulsed Illumination at Fixed Setup Position (0, 0, 0)

Steady-State Rendering Confocal Rendering

Fig. 5. Transient Rasterization. Our rendering pipeline renders transient images using hardware-accelerated rasterization, supports confocal and non-
confocal setups and allows to render steady-state indirect reflections. To illustrate quality of the rendered transients we show images without the proposed
detector noise model. Our approach renders a car model with 52081 vertices and 200018 faces to full transient measurement cubes with 256 × 256 × 600
spatio-temporal resolution at interactive rates on consumer GPU hardware within 117ms. Given scene (top left), we show the synthesized transient video frames
at different travel times (right 5 columns). Top: transient images illuminated in a setup with a single pulsed light source at (0, 0, 0). Bottom: transient images in
a confocal setup. The steady-state rendering without time resolution is shown in the bottom left.

as shown in Figure 5, are sparse with large areas of low entropy.
Instead of propagating all intensity values to a hidden volume, e.g.,
as in backprojection methods [Velten et al. 2012], we reason only on
features that are critical for reconstruction, e.g., spherical wavefront
shapes of scene objects instead of measurement noise or ambient
background. These extracted features occupy a significantly smaller
latent space than the original intensity values. In the second step,
we propagate these features into the spatial target volume. This
feature propagation can be either learned, or based on existing phys-
ical propagation models, such as backprojection [Velten et al. 2012;
O’Toole et al. 2018b; Liu et al. 2019]. We formulate the individual
steps in the latent feature extraction as

Ct = Fe (τ ) Feature Extraction (6)

Cs = Ft→s (Ct ), Feature Propagation (7)

where Fe and Ft→s denote the feature extraction and propagation
unit, respectively, and Cs and Ct are the extracted spatio-temporal
feature and the 3D spatial feature, respectively. The learned em-
bedding Cs is 3D-aware and can be used to reconstruct the hidden
object and perform different semantic understanding tasks, which
we discuss in Sec. 5.

4.1 Spatio-Temporal Feature Extraction
For an RGB transient image with 512 time bins and a spatial reso-
lution of 256 × 256, the feature extraction network takes as input
a tensor of size (512, 256, 256, 3) and immediately applies a convo-
lutional downsampling block to reduce the amount of data. The
downsampling block is composed of two branches. The first branch
contains one convolutional layer, and the second branch includes

another convolutional layer followed by one ResNet block [He et al.
2016] to refine the downsampled features. Each ResNet block con-
tains two convolutional layers, interlaced with one LeakyReLU layer.
All convolutional layers have kernel size 3, stride 1, and three output
channels (limited by our training hardware memory), except for the
first convolutional layer of both branches. These first layers have
stride 2 spatially and temporally to immediately compress features
in the spatio-temporal domain. The outputs of the two branches
are concatenated along the channels, resulting in a final extracted
feature of size (256, 128, 128, 6), i.e. ≈ 4× smaller in size than the
input raw data, see the Supplemental Material. While we assume a
spatial feature resolution of 128 throughout this work, the spatial
feature resolution and the number of channels is a free architecture
choice, and we analyze different resolutions in Sec. 6.

4.2 Latent Feature Propagation
Learning hidden 3D representations from transient images requires
transforming spatio-temporal information into a representation in
the hidden spatial domain. To tackle this challenge, a large body of
work [Pandharkar et al. 2011; Velten et al. 2012; Gupta et al. 2012;
Kadambi et al. 2016; O’Toole et al. 2018a; Tsai et al. 2017; Arellano
et al. 2017; Pediredla et al. 2017; O’Toole et al. 2018b; Xu et al. 2018;
Heide et al. 2019; Liu et al. 2019] has explored inverse filtering and
optimization methods that rely on approximate physical forward
models. While convolutional deep learning has been shown to be
effective for 3D reconstruction tasks using convolutional features for
local feature extraction [Çiçek et al. 2016; Wu et al. 2015; Choy et al.
2016; Richter and Roth 2018], learning non-local representations
that require spatial transformations is still an open problem [Wang
et al. 2018; Jaderberg et al. 2015]. Indeed, common operations in deep
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models have been shown to be excellent at extracting translation-
invariant local details.
We propose to incorporate physical models to tackle this chal-

lenge. Given extracted features, the feature propagation network
globally reasons about the shape over time and converts the in-
formation to the spatial domain instance as Ft→s in Eq (7), which
propagates spatio-temporal features Ct ∈ Rc×t×h×w to 3D spatial
features Cs ∈ Rc×d×h×w . This idea of feature propagation for time-
to-space transformation is, in fact, compatible with a variety of
existing methods. For example, one can replace Ft→s with different
physical model-based approaches such as the Back Projection (BP),
Light Cone Transformation (LCT) [O’Toole et al. 2018a], Fast F-KMi-
gration (F-K) [Lindell et al. 2019b], or a learnable algorithm such as
a U-Net [Ronneberger et al. 2015] – all operating on feature vectors
instead of intensity measurements. As a result, the proposed feature
propagation network allows us to encode and propagate higher-level
information beyond intensity. Moreover, the input to the feature
propagation network decreases cubically compared to raw data, al-
lowing for reduced runtime andmemory footprint while enabling ef-
ficient high-resolution reconstructions. For example, given transient
volumes of size L×L×L and a downsampling factor of D, compared
to methods with runtime complexity O(L3 log (L)) and memory re-
quirement O(L3), such as [O’Toole et al. 2018a; Lindell et al. 2019b],
this results in a super-cubic speedup of D3 · log (L)/log (L/D) and cubic
memory reduction of factor D3, compared to existing methods.

4.3 Feature Abstraction
To further abstract and complete hidden scene information, we
process the propagated feature from last step with an additional
volumetric embedding block. In particular, after feature propagation,
the volumetric representation is passed through a 3D convolutional
layer with kernel size 3, stride 1, and output channel number as 6
without bias parameter. Instead of opting for a larger ResNet block,
we initialize the weights such that its output is identical to its input
when the training starts. This feature abstraction block aims at
further abstracting and filling holes of the encoded representation
before using it for reconstruction or recognition tasks. The output
of this block is the final learned volumetric feature representation.

5 END-TO-END NLOS NETWORKS
The learned feature representation allows us to train learned meth-
ods for different NLOS tasks, in an end-to-end fashion, jointly with
the feature extraction, propagation, and abstraction units described
in the previous section. For the recovery of NLOS 2D images, we
first estimate a 3D visibility map using a 3D convolutional network.
We then collapse the 3D volume to a 2D output feature map, by
accumulating the 3D feature map scaled by the visibility map for
all voxels along the ray corresponding to each 2D pixel. Finally, we
process the 2D feature map with a rendering network that includes
upsampling layers, resulting in a high-resolution RGB image. A sim-
ilar approach can be used to produce the corresponding NLOS 2D
depth map in the hidden volume. In contrast, we train recognition
tasks, such as classification and object detection, directly from the

intermediate feature map. In the following, we discuss the differen-
tiable modules that are used for the diverse NLOS tasks we address
with the proposed method.

5.1 2D Rendering
Illustrated in Figure 6, the proposed rendering network consists of
four modules tailored to the specific NLOS task the method tackles:
(1) a view transformer that spatially transforms a 3D feature map
based on camera positions, (2) a visibility network that predicts
visibility over the volumetric embedding, (3) a differentiable renderer
that renders an RGB image given a collapsed 2D feature of the hidden
object, and (4) a depth estimator that reconstructs a depth map given
the 3D representation and the corresponding visibility map.

View Transformer. We start with the 3D feature volume Cs of
size (c,d,h,w), where d,h,w are the depth, height, and width of the
volume and c is the encoded feature length at each location. Suppose
we wish to render an orthogonal view defined by the virtual camera
with look-at point at the center of the hidden volume. We define
this camera by a rotation matrix R ∈ R3×3 representing camera
rotation around the hidden volume center. To render an intensity
or depth image captured by the virtual camera, Cs is first spatially
transformed by

C ′
s = S(Cs · R

T ), (8)
where S is an operator that computes the values in the final dis-
cretized image space by sampling from the rotated feature with
bilinear interpolation. For a hidden scene reconstruction from the
“canonical” orthogonal view, corresponding to the direction towards
the relay wall, R is an identity matrix.

Visibility Network. For hidden rendering tasks, hidden scene fea-
tures embedded on surfaces visible to the virtual camera. To this end,
we model visibility with a visibility map over the volumetric embed-
dings to predict features on the hidden surface. The visibility map
is set to one for the voxel that has the maximum activation along
all depth levels, and zero otherwise. With this visibility map, the
feature embeddings Cs are collapsed onto a planar representation p
of size (c,h,w), that is

pi , j ,k =
d∑

u=1
C ′
si ,u , j ,kvu , j ,k . (9)

After collapsing the features, p ·, j ,k encodes only the features visible
to the virtual camera across all depth planes at image position (j,k).

Image Rendering Network. To produce a 2D image from a col-
lapsed feature map, we implement the rendering process with a
convolutional network to decode the embedded information to in-
tensity color channels. The network upsamples the feature to a
higher resolution and outputs an RGB image

I = Frender(p). (10)

Depth Rendering Network. Depth estimation requires an input
feature that encodes surface location along the viewing ray. The
visibility map by definition provides such information, but its dis-
cretization is tailored to the feature locations that live in coarse 3D
grids. To refine depth embedded in the visibility map, we rely on the
collapsed planar feature p. Specifically, we concatenate the visibility
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Fig. 6. Overview of the proposed Feature Reconstruction Network. At the core of the algorithm lies a learned feature embedding that lives in the
hidden reconstruction volume. We first extract features from a transient input image, which are propagated to the hidden volume. Once the features are
embedded in hidden volume, a visibility network is applied on the learned 3D feature to estimate a visibility map from the orthogonal view and flattens the 3D
feature into 2D. In the final step, an image rendering network takes the flattened feature map as input and predicts the RGB image, while a depth estimator
uses the concatenated visibility map and flattened feature map to predict a depth map.

map v and the collapsed feature p as input to our depth estimation
network, which outputs a depth map

Z = Fdepth(v,p). (11)

5.2 RGB-D Reconstruction
With the building blocks from the previous paragraphs in hand, we
next describe how we train an end-to-end network to perform RGB-
D reconstruction. The transient image first goes through feature
extraction, propagation, and abstraction to be embedded into the
proposed volumetric representation. The visibility network is then
applied to estimate a visibility map from the canonical view, which
is flattened to produce a 2D feature map. In the last step, the image
rendering and depth rendering networks produce RGB and depth
maps. These are penalized by the overall loss

L = αLRGB + βLdepth = α
h ·w∑
i=1

(I
pr
i − I

gt
i )2 + β

h ·w∑
i=1

(Z
pr
i −Z

gt
i )2, (12)

where pr and gt denote prediction and ground truth, respectively.
The loss weights α and β control the loss contribution of each term,
and we set α = β = 1 for all experiments. Note that all stages
along the way, as well as the final loss, are differentiable, allowing
us to use backpropagation to train weights. This includes both the
image and depth rendering networks from the previous paragraphs,
which differentiably render scenes represented as latent embeddings
learned from transient images. The loss in Eq. 12 hence penalizes
these networks to learn rendering in the training, i.e., minimization
of the loss.

Multi-View Supervision. To aid the representation learning, we
add multi-view supervision. Specifically, during training, the hidden
feature volume is simultaneously rendered from multiple random

camera views. To render non-canonical views, the learned volumet-
ric representation is first reprojected by the view transformer based
on a new camera position R′ ∈ G, where G is the set of sample
views. The reprojected volume is then passed to the subsequent
image renderer and depth estimator. Similar to single-view RGB-D
reconstruction, multi-view supervision also applies to both RGB
and depth images, resulting in the following multi-view loss

L = α
m∑
j=1

LRGB j + β
m∑
j=1

Ldepthj , (13)

wherem is the total number of supervised views. We have found
that incorporating multi-view consistency from random views helps
to training learn more generalizable embeddings.

5.3 Classification
Aside from geometry and reflectance, the learned representation
Cs also efficiently encodes semantic information. We rely on the
proposed encoding to perform end-to-end recognition such as clas-
sification and hidden object detection as follows. For the task of
r -class classification, we feed Cs into a convolutional network to
predict the input class labels. The classification network is com-
posed of five 3D convolutional layers. Cs is first downsampled by
four convolutional layers with kernel size 3 and stride 2, then is
convolved with a fifth layer with kernel size 4, becoming a vector
of length r for class prediction. We use a softmax loss for training,
that is

L =
r∑
i=1

− log

(
exp

(
p
gt
i
)∑r

i=1 exp
(
p
pr
j
) ) , (14)

where pgti and p
pr
j are the ground-truth class label for class i and

prediction for class j, respectively.
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5.4 Object Detection
We formulate hidden object detection as predicting a bounding
box (xmin, xmax,ymin,ymax, zmin). For depth, we predict only the
near boundary zmin and not the far boundary, because the input
measurement only partially captures the front surface of the hidden
object. To predict the bounding box, we use a convolutional network
that takes the collapsed 2D feature map p as input and outputs five
values for regression during training. The network consists of four
convolutional layers with stride two and kernel size three, followed
by an average pooling layer that extracts a one-dimensional feature
of length 512 and a fully-connected layer that predicts five values.
The loss function is sum of squared differences of the regressed box
coordinates, that is

L =
∑

u ∈{xmin,xmax,
ymin,ymax,zmin }

(ugt − upr)2. (15)

6 ANALYSIS AND SYNTHETIC VALIDATION
In this section, we validate the the proposed method on synthetic
transient image data.

6.1 Synthetic Dataset
For training and validation in simulation, we create several syn-
thetic transient image datasets rendered from ShapeNet [Chang
et al. 2015]. The transient images are rendered in non-confocal and
confocal setups as histograms with 33 ps bin resolution (correspond-
ing to a travel time of 1 cm), histogram length of 512, and 256 × 256
spatial scanning resolution. To evaluate the generalization of the
proposed method in an extreme setting, from a single class during
training to multiple unseen classes or measured data, we render
a motorbike dataset and a car dataset. The car dataset consists of
2244 transient data cubes rendered from 2244 different cars, with
each car rendered with one random transformation. The motorbike
dataset consists of 6925 transient images rendered from 277 different
motorbikes, with each motorbike rendered from 25 random transfor-
mations. To sample random model transformations, we first rotate
the object with a rotation uniformly sampled from the range yaw
∈ [−180°, 180°], roll ∈ [−20°, 20°], pitch ∈ [−20°, 20°], and then shift
the object by an offset uniformly sampled from [−0.3, 0.3] for all
coordinate axes. Moreover, we also evaluate the proposed method
when trained on multi-class data. To this end, we render a dataset
consisting of the top 13 classes with the most number of examples
in ShapeNet [Chang et al. 2015], where for each class 446 to 500
transient images are rendered for different object instances. For all
the datasets, the training, validation, and testing split is 8:1:1, and
views of the testing objects are unseen during training. We refer to
the Supplemental Material for additional training details.
We apply noise calibrated for N = 20k pulses with s = 0.02 for

our measurement model from Sec 3.1. We normalize the transient
measurements by their 99th percentile to range [0, 1]. For multi-view
supervision, two views are used for each object during training. The
two views include one fixed orthogonal view and a random non-
orthogonal view. The non-orthogonal view is rendered by uniform
random rotation of the camera around the center of the hidden
volume with fixed distance to the hidden volume center. As transient

Table 2. NLOS Reconstruction Evaluation. PSNR and SSIM comparison
between the proposed RGB-D model trained on multi-class with multi-
view supervision and state-of-the-art methods after maximum intensity-
projection along the z-axis. All methods are evaluated on a held-out testing
set composed of 643 multi-class examples, with transient histograms of 512
time bins and a spatial resolution of 256 × 256. We note that the transients
are not cropped in the temporal domain. The proposed model outperforms
existing methods by more than 5 dB in PSNR.

Test Score FBP [2012] LCT [2018b] F-K [2019b] Proposed

PSNR [dB] 19.72 19.06 23.74 29.29
SSIM 0.25 0.51 0.80 0.92

information is biased to surfaces facing the relay wall, we limit the
maximum deviation to 25 degrees in order to prevent the model
from hallucinating occluded parts.

6.2 2D Image Reconstruction
We first evaluate NLOS 2D image reconstruction on the multi-class
data set. Tab. 2 lists quantitative evaluations. We highlight that the
proposed model outperforms existing methods by a large margin of
more than 5 dB in PSNR. In Fig. 7, we visualize qualitative results.
Compared to F-K [Lindell et al. 2019b], LCT [O’Toole et al. 2018a],
and filtered back-projection (FBP) [Velten et al. 2012] (all evaluated
with unmodified code from [Lindell et al. 2019b]), we observe that
the our learned method is able to reconstruct 2D images with clearer
boundaries while achieving more accurate color rendering. The first
column shows an example where our model is able to reconstruct
details on the front surface while F-K fails to recover fine details
and LCT outputs only rough blurred shapes. In the 7th column, the
proposed approach reconstructs the rear light in contrast to existing
methods.
While the existing methods rely on physical models and do not

facilitate learning rich scene priors, the proposed model, however,
relies on deep convolutional networks that can overfit when trained
on small datasets or data that is not representative of real mea-
surements. To validate our model, we also assess the generalization
ability of the proposed approach.We train amodel on the single-class
motorbike dataset, and evaluate it on both unseen object of the same
class motorbike and unseen classes; see Fig. 8. The proposed method
not only faithfully reconstructs orthogonal view NLOS images for
unseen objects of the same class, see Supplementary Material, but
also generalizes well to diverse unseen classes. Trained only on the
motorbike class, the proposed model is able to reconstruct other
fine structures and pattern that do not exist in the training data set,
for example, the thin structures on lamps, ships and chair backs.

6.3 Depth and Multi-View Image Reconstruction
As described in Section 5.1, by adding a depth rendering network
and multi-view supervision, the proposed method supports joint
image and depth reconstruction from multiple viewpoints in an
end-to-end fashion. To assess multi-view RGB-D recovery, we train
an RGB-D model with depth supervision on the multi-class dataset.
For brevity, we refer to the Supplementary Material for qualitative
multi-view reconstruction results. Fig. 9 shows depth reconstruc-
tion comparisons. For the methods compared, we apply maximum
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Fig. 7. Qualitative Evaluation for NLOS 2D Imaging. Compared to F-K [Lindell et al. 2019b], LCT [O’Toole et al. 2018a], and filtered back-projection
(FBP) [Velten et al. 2012] (unmodified code from [Lindell et al. 2019b] for all comparisons), we observe that the proposed method is able to reconstruct 2D
images with clearer boundaries while achieving more accurate color rendering. For example in the first column, the proposed model is able to reconstruct
details on the front surface while F-K fails to recover fine details and LCT outputs a much blurrier estimates.

Fig. 8. Generalization to Unseen Classes.We note that the proposed model, trained only on motorbikes, not only faithfully reconstructs unseen motorbikes
(left), but also generalizes well on other unseen classes (right). We observe that even thin structures can be recovered well by the proposed method, e.g., the
first lamp and the antenna on the fourth watercraft.

intensity projection along z axis. Specifically, for each pixel on
x − y plane, we find the voxel with the maximum intensity along z
axis, and use this voxel’s z position as predicted depth at location
(x,y). Despite the complex geometry of the compared scene, the
proposed approach recovers fine structures with a smaller error
compared to existing F-K [Lindell et al. 2019b] and LCT [O’Toole
et al. 2018b] methods. As also evident from the individual depth
map reconstructions, especially in model parts distanced further
from the relay wall, the proposed method excels. Please see the
Supplemental Material for additional RGB, depth, and multi-view
reconstruction evaluations.

6.4 Ablation Study and Analysis
Next, we analyze the influence of different network architecture
components for the key modules in the proposed method. First, we

show how adding depth and multi-view prediction impacts NLOS
image reconstruction, and then we compare the performance of
using different methods in our feature propagation network. More-
over, we also analyze the resolutions of the feature map in the
proposed feature propagation module. For each comparison, we use
the same baseline model. This model is trained on the car data set
for single-view 2D NLOS image reconstruction. The model uses
(d,h,w) = (32, 32, 32) as the feature map resolution for the feature
propagation network.

Depth and Multi-view Prediction. In the left of Tab. 3, we analyze
the influence of depth and multi-view supervision on NLOS RGB
reconstruction. Adding depth does not significantly influence 2D
NLOS image reconstruction, while multi-view supervision helps
improve single-view recovery.
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GT Depth Map Proposed Depth Map F-K Depth Map LCT Depth Map

Scene MAD 4.9 cm MAD 6.8 cm MAD 6.4 cm

Scene
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1m

0m

2m

Depth Error Map for Various Scenes

Scene

Scene

Fig. 9. Depth Prediction.We visualize the error in depth prediction of a
synthetic motorbike and compute Mean Absolute Distance (MAD) for each
method. Our method predicts more accurate depth compared to the F-K
and LCT methods, especially in challenging model parts that are distanced
further from the relay wall.

Feature Propagation Units. Next, we analyze the impact of differ-
ent feature propagation units Ft→s on the reconstruction quality.
In the middle table in Tab. 3, we compare models with different
propagation approaches. The first model uses a learned 3D convolu-
tional U-Net architecture and the last three methods use physical
propagation methods as feature propagation units. The U-Net has
four downsampling and four upsampling steps. At each downsam-
pling step a 3 × 3 × 3 convolution with stride 2 and output channel
number doubled is applied and followed by an instance normal-
ization layer and LeakyReLU. Each upsampling step consists of a
3 × 3 × 3 up-convolution with stride 2 that halves the number of
input feature channels, an instance normalization layer, a ReLU, and
a concatenation with a feature map from its corresponding down-
sampling stage. We note that the learned U-Net has the weakest
reconstruction performance and struggles to learn the global spatial
transformation of the NLOS image formation. Moreover, with the
U-Net as learned propagation block, the resulting architecture also
has a large number of learnable parameters (slightly over 24 million
for eight 3D convolutional layers) in feature propagation network,
which makes this model not only harder to optimize but also prone
to overfitting. Comparing existing physically-based reconstruction
methods, we find that, perhaps interestingly, the performance of fil-
tered backprojection is very comparable with that of the LCT-based
propagation block [O’Toole et al. 2018b]. Fig. 10 documents quali-
tative comparisons. We see that all methods are able to predict the
rough shape and color of the hidden object. While the LCT and FBP-
based propagation units perform on-par, Stolt’s F-K migration [Stolt
1978] as a propagation block performs the best among all of them.

Fig. 10. Analysis of the Feature Propagation Module.We illustrate the
impact of different feature propagationmethods in our network architecture.
While all variants are able to predict the rough shape and color of the hidden
object, FBP and LCT perform on-par, and an F-K feature propagation aids
the reconstruction of our network. See the red rear light of the vehicle in
the first row, and the windshield in the third row.

Table 3. Ablations and Analysis of NLOS Image and Depth Recon-
struction Networks. The left table shows that multi-view prediction im-
proves performance and that RGB model and RGB-D model perform simi-
larly. The center table compares reconstruction performance using different
feature propagation methods. The right table illustrates how resolution of
the learned volumetric representation influences the performance. Experi-
ments for left two tables use a feature resolution of 32.

Method MSE PSNR
[×10−3] [dB]

RGB 6.34 22.87
RGB-D 6.45 22.75
RGB Multi-view 6.20 23.08
RGB-D Multi-view 6.21 23.05

Ft→s MSE PSNR
[×10−3] [dB]

U-Net 8.15 21.96
FBP 6.40 22.81
LCT 6.34 22.87
F-K 5.72 23.28

Resolution MSE PSNR
[×10−3] [dB]

32 6.34 22.87
64 5.10 23.61

For example, even the small feature volume of size 16 × 32 × 32 is
able to recover the red light at the top-right corner of the first car,
the front glass of the third car in the right shape and color, and the
rear light and window frame of the last car.

Feature Embedding Resolution. Finally, we also analyze the effect
of the resolution of the latent feature embedding. Tab. 3 lists how
the feature map resolution affects the performance. Increasing the
resolution from 16 × 32 × 32 to 32 × 64 × 64 (both with 32 feature
channels) results in a large performance gain. We also observe that
with resolution of 32 × 64 × 64, our model is able to preserve more
details than the smaller model. We did not observe further gains at
higher resolutions for the given setup configuration.

6.5 Object Recognition
In contrast to existing optimization and filtering-based methods, the
proposed approach facilitates learning NLOS reconstruction jointly
with a downstream recognition or imaging task, in an end-to-end
fashion. Next, we demonstrate how the proposed model allows for
end-to-end classification and detection of hidden objects.
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Table 4. End-to-end NLOS Classification on Synthetic and Real Data. We compare the classification accuracy of the proposed method, learned to
classifying hidden scenes with a monolithic end-to-end network (Classifierend-to-end), and sequential NLOS image classification baselines. For these baselines,
we train and evaluate a 2D classifier on the ground truth albedo maps (ClassifierGT-image), FK [Lindell et al. 2019b] albedo prediction using maximum-intensity
projection (Classifiersequential-F-K), and intermediary albedo map produced by the proposed method (Classifiersequential-ours). The first four rows of the table
report accuracy on the synthetic test set, see text, where the proposed end-to-end classifier Classifierend-to-end (66.3%) trained in feature space outperforms the
sequential method Classifiersequential-F-K (50.7%) and Classifiersequential-ours (50.0%) trained on intermediate NLOS images. We report the confusion matrix for
the proposed end-to-end classifier on the right. The last row in the table reports the confidence scores for the experimental bike measurement. We note that
the proposed model recognizes it as a motorbike with more than 66% probability.

Classifier Airplane Lamp Firearm Chair Watercraft Car Motorbike Overall

ClassifierGT-image 70.0% 65.3% 54.1% 90.0% 62.0% 73.4% 76.7% 70.2%
Classifiersequential-F-K 68.0% 48.9% 27.0% 64.0% 38.0% 44.8% 64.2% 50.7%
Classifiersequential-ours 64.0% 51.0% 33.3% 66.0% 30.0% 46.9% 58.9% 50.0%
Classifierend-to-end 68.0% 67.3% 56.3% 82.0% 52.0% 81.6% 57.1% 66.3%

Prediction on Bike Scene 0.1% 1.8% 11.5% 7.1% 10.7% 3.0% 66.1%
Airplane Lamp Firearm ChairWatercraft Car Motorbike

Prediction

Airplane

Lamp

Firearm

Chair

Watercraft

Car

Motorbike

Cl
as

se
s

0.68 0.00 0.04 0.04 0.20 0.04 0.00

0.02 0.67 0.02 0.08 0.02 0.06 0.12

0.04 0.06 0.56 0.04 0.12 0.04 0.12

0.00 0.12 0.00 0.82 0.02 0.02 0.02

0.04 0.10 0.02 0.06 0.52 0.18 0.08

0.04 0.04 0.02 0.00 0.04 0.82 0.04

0.02 0.02 0.11 0.05 0.12 0.11 0.57

Confusion Matrix of End-to-End Classification
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While [Caramazza et al. 2018b] show that neural networks can be
used to identify hidden pedestrians, assuming only a single pedes-
trian in the scene, we tackle multi-class classification and detection,
discriminating objects with various shapes and categories. For train-
ing, we use a subset of class from the confocal multi-class data set
described in Sec. 6.1, including seven classes (plane, car, chair, lamp,
motorbike, firearm, and watercraft). Each class has 500 examples
split into training, validation and testing sets with 8:1:1.

For classification, we replace the rendering networkwith a classifi-
cation network Classifierend-to-end; see Sec. 5.4. This network ingests
the feature map p as input and uses four downsampling convolu-
tional layers to predict the probability of each category directly
from the learned feature encoding. It is trained in an end-to-end
fashion only supervised by the classification loss. We compare the
proposed approach to sequential image reconstruction, producing
an intermediary image, followed by conventional classification. To
this end, we train a 2D image classifier Classifiersequential-F-K on
intermediate reconstructions from the F-K and our learned recon-
struction method. For the sequential F-K method, we use maximum
intensity projections as intermediate image reconstruction while
for our method, we use our prediction as the intermediate image.
We then train classifiers with matching network capacity on the
images. These sequential 2D classifiers take the projected 2D image
of size 3 × 256 × 256 size as input to predict seven classification
scores. Tab. 4 (left) validates that the proposed end-to-end classifica-
tion approach outperforms existing sequential methods by more than
15% in accuracy, including ones using 2D images produced by our
reconstruction network.

For object detection, we initialize the detection head with random
weights as described in Sec. 5.4 and use a pre-trained image recon-
struction model to initialize the parameters of the feature extraction
and abstraction network. Then the entire model is trained with 2.5D
bounding box regression, on a data set containing 14 classes. We
report 2D IoU (Intersection over Union) between ground truth and
predicted bounding box projected onto x − y plane. In Figure 11 ,
we report our end-to-end detection results and compare with two
baselines whose inputs are rendered image and depth: a detection
model with input rendered from the proposed RGB-D method and a
detection model with input rendered from F-K. In the first column,

Fig. 11. 2.5D Object Detection. We compare the proposed end-to-end
detector (End-to-end) to two sequential detectors trained on images and
depth as intermediary representation. Specifically, we train a detector on
RGB-D images from our reconstruction method (Sequential-Ours) and a
detection model with input image and depth from F-K (Sequential-FK); see
text. Top: IoU evaluation on the synthetic test set, validating that proposed
end-to-end model outperforms sequential detection. Center: End-to-end
detection result on simulation data. Bottom: Evaluation of the synthetic
model on real data validating its generalization capability.

Detector Avg. IoU Cabinet Chair Display Firearm Table Watercraft Car Bike

Detectorend-to-end 0.73 0.80 0.75 0.72 0.73 0.73 0.81 0.74 0.74
Detectorsequential-ours 0.69 0.79 0.75 0.72 0.64 0.70 0.79 0.73 0.68
Detectorsequential-F-K 0.67 0.78 0.70 0.70 0.65 0.68 0.75 0.71 0.69

Predictions on Simulation Data

Predictions on Real Data

we show average IoU across all classes and IoU for seven individual
classes with top per-class IoU. We note that the proposed model per-
forms the best in this task, indicating the advantage of end-to-end
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detection with learned features over sequential detection – even
when compared to the proposed method producing the intermedi-
ary image. Fig. 11 shows qualitative end-to-end detection results on
both simulation and real data. Please see Supplemental Material for
a full IoU table for all 14 classes and additional qualitative detection
results.

7 EXPERIMENTAL VALIDATION
In this section, we assess the proposed method on experimentally
acquired measurements.

7.1 RGB-D Imaging
To validate that the proposed method generalizes to unseen experi-
mental data, we test the proposed model trained on the synthetic
motorbike-only dataset on the experimental dataset from [Lindell
et al. 2019b], which contains diverse unseen scenes. Specifically,
pulse-scanned confocal measurements are acquired for a dragon, a
bicycle, a statue, a resolution table, a disco ball and an indoor scene.
As all the real captures are single wavelength captures, we train
our model in grayscale as an approximation to a single wavelength
model. The proposed method is an RGB-D NLOS reconstruction
model using an F-K Ft→s feature propagation network with resolu-
tion 128. The full network recovery performs at real-time rates of
at 20 reconstructions per second, on the full transient image with-
out temporal cropping. We refer to the Supplemental Material for
additional training details. Fig. 12 shows reconstruction results com-
pared to state-of-the-art physically-based reconstruction methods,
including F-K migration [Lindell et al. 2019b], LCT [O’Toole et al.
2018a], Phasor NLOS [Liu et al. 2019] and filtered back-projection
(FBP) [Velten et al. 2012], which we discuss in the following. We
note that all compared method take as input the full time-resolved
transient sequences without any temporal cropping.

Generalization. The first column in Fig. 12 illustrates that the
proposed model predicts plausible results for all the real captures
with diverse shapes (dragon, statue, bike and resolution table) and
even complex geometry arrangement (indoor scene), which all have
not been seen during training on the completely synthetic motorbike
data set. These results validate the generalization ability of our
model in two aspects. First, the proposed model is able to generalize
from synthetic to real data despite the domain gap. Second, note
that none of the tested classes appears in the training set, validating
the cross-class generalization on real data that was observed in
simulation in Sec. 6. We validate the generalization capability of the
proposed architecture by comparing to a vanilla U-Net model, which
is trained with simulation data to directly predict RGB-D from input
transient images. We refer to the Supplemental Material for network
and training details. The fifth column in Fig. 12 confirms that such
existing encoder-decoder methods do not generalize to measured
data. In the Supplemental Material, we further validate that U-Net
models with additional adversarial losses also fail to generalize to
real data.

Qualitative Assessment. As all compared methods directly gen-
erate a 3D albedo volume, we similarly present the results of our
method in a 3D volume by combining the predicted intensity map

and depth map. The proposed method produces sharper object
boundaries, reveals fine detail missing in other methods, while re-
moving clutter and producing a clean background. For the dragon,
statue and bike, existing methods, such as F-K, LCT and FBP suffer
from artifacts, including fuzzy outlines and blurred out geometry.
While the Phasor NLOS method is able to reconstruct planar hidden
scenes relatively sharply, estimates contain a background noise floor
resulting from the low signal to noise ratio in the measurements.
The proposed model generates faithful hidden textures and ge-

ometry, which can be observed, for example, in the dragon tail, bike
axle, and the shadow region in the statue in Fig. 12. The method
recovers small geometry and albedo variations such as the statues
legs, arms, body and statue base, and it successfully recovers com-
plex scenes as the room scene. Fine detail in the shelf, such as the
books, mannequin head, and feature and T-shaped reflective object
in the top left are recovered by the proposed method, while they
appear blurred in existing methods. Moreover, the statue in the
background is recovered at higher contrast compared to previous
methods. The proposed network architecture also handles highly
specular scenes, such as the discoball scene in row four of Fig. 12
without background artifacts as in the compared methods.

We attribute the improved hidden image recovery without re-
covery noise to the rich scene priors the network has learned from
observing diverse synthetic data. The proposed method learns this
prior by working on feature vectors instead of intensity, which
makes it possible to embed useful information while suppressing
the noise in the feature space. The effectiveness of the learned prior
is also confirmed by additional experiments that perform denoising
on intermediate outputs from the F-K and Phasor methods. In the
Supplemental Material, we validate that learned denoising methods
trained on intermediate outputs from existing methods do not offer
an alternative to the proposed approach.

7.2 Object Recognition
As reported in Table 4, the proposed end-to-end classification model
trained on synthetic data does not only substantially outperform
sequential classifiers (even if trained on top of intermediary output
images produced by the proposed method) but it also generalizes
to measured data. Specifically, we train a model in simulation on
grayscale input data, as in Sec. 6.5. Tested on the real bike measure-
ment, the model predicts the correct class as listed in the bottom
row of Tab. 6.5, illustrating the effectiveness of our transfer learning
method.
Fig. 11 shows that the proposed end-to-end detection model is

also able to correctly predict the bounding boxes for different classes
with various color, shape, and pose. Both quantitative and qualitative
evaluations indicate that our model is able to predict 3D bounding
box with a high precision. The 3D predictions on the bottom of
Fig. 11 validate, given the small experimental data available, that
the proposed end-to-end detector model generalizes to real data.
We envision our end-to-end detector and classification methods
as basic building blocks for future NLOS scene understanding that
could analyze complex environments just by observing their indirect
reflections.
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Proposed F-K LCT Phasor U-Net Scene

Fig. 12. Reconstructions from Pulsed Single-Photon Measurements. The proposed learned reconstruction method, trained only on synthetic motorbike
dataset, generalizes to transient measurements acquired with the setup described in [Lindell et al. 2019b]. The network handles challenging scenes with
complex geometries, occlusions, and varying reflectance. Validating the synthetic assessment, the proposed learned method recovers fine hidden detail,
especially with low reflectance, without amplifying reconstruction noise, outperforming existing methods qualitatively and quantitatively.
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Table 5. Runtime and Memory Comparisons. The proposed method is
five times faster and consumes less memory than existing methods that
do not allow to incorporate priors. It is multiple orders of magnitude faster
than existing methods that can incorporate total variation priors. We note
that the CPU runtimes and memory estimates are generated with author-
provided unmodified MATLAB code, while the GPU implementations of the
existing methods are our PyTorch GPU implementations.

Method FBP LCT F-K Phasor LCT + TV Proposed
[2012] [2018b] [2019b] [2019] [2018b]

Runtime (CPU) 13.22 s 13.29 s 18.44 s 17.64 s 100 min N/A
Runtime (GPU) 0.28 s 0.24 s 0.43 s 0.48 s N/A 0.045 s
Memory 15.6 GB 17.7 GB 21.0 GB 10.8 GB 17.7 GB 512 MB

7.3 Memory and Runtime
To produce a full hidden RGB-D reconstruction from an experi-
mental transient measurement with histogram length of 512, and
256 × 256 spatial scanning resolution, the proposed method runs
at real-time rates of 45 ms on an NVIDIA GeForce RTX 2080 GPU.
The peak memory consumption of our method is 512 MB includ-
ing learnable parameters, calculated by analyzing the data flow in
the inference forward pass and with sequential layer execution. As
discussed in Sec. 4.1, the proposed method theoretically allows for
cubic memory reduction compared to existing methods. We first
run existing methods with MATLAB author-provided code on a
general-purpose CPU. As shown in the first row of Tab. 5, the ex-
isting FBP, LCT, F-K, and Phasor methods require more than 10
seconds per transient measurement, on the CPU, and consume an
order of magnitude more memory exceeding 10 GB.
While efficient GPU implementations may allow these meth-

ods to achieve real-time runtimes, they do not facilitate the use
of priors, and incorporating even traditional gradient priors re-
quires hundreds of iterations of alternating optimization methods,
as for the total-variation-regularized LCT variant from [O’Toole
et al. 2018b]. Specifically, LCT with total variation penalty requires
around 100 minutes (100 iterations at 60 seconds per-iteration) using
the original code [O’Toole et al. 2018b] on the CPU. To assess the
memory and runtime profiles of existing methods on the GPU in the
same inference framework, we also reimplemented existing meth-
ods in PyTorch and report the runtime and memory consumption
on the GPU in Tab. 5. In this setting, the proposed method is around
five times faster and consumes an order of magnitude less memory
than existing methods that do not allow to incorporate priors. As
the first efficient method that allows to incorporate complex learned
scene priors, we envision researchers to build on top of our code
and models which we will release.

8 DISCUSSION AND CONCLUSION
Wepropose to learn feature embeddings tailored to non-line-of-sight
imaging and non-line-of-sight recognition tasks, such as classifi-
cation and hidden object detection. Instead of relying on intensity
values to recover and analyze occluded scenes, we propagate and
reason in feature space about the hidden scene information, such as
shape, reflectance and object type. As such, the proposed method
makes a first step towards combining recent deep network architec-
tures, that excel at extracting such features of interest, with physical
image formation models, while being trainable in an end-to-end

fashion. This allows us to learn rich scene priors which aid NLOS
reconstruction and analysis. We show that recovering images or
object class from space-time transformed features allows the pro-
posed method to generalize far better than existing encoder-decoder
architectures that do not follow this structure. Leveraging physical
models for this spatio-temporal transform allows us to learn scene
representation which, in contrast to existing albedo representations,
natively encode 3D scene structure, reflectance, multi-view con-
sistency, and hidden scene semantics in a compressed form. We
train and validate the proposed method on a large simulated tran-
sient image dataset, enabled by a novel state-of-the-art transient
renderer. The proposed method outperforms the state-of-the-art
by more than 5 dB in NLOS image recovery. Although trained on
simulated data only, we validate that the method generalizes to
experimental data, where it outperforms recent inverse filtering and
optimization methods across a variety of scenes, while allowing for
real-time reconstruction at low memory consumption. As such, the
proposed method is the first efficient method that allows to incorpo-
rate learned image priors and end-to-end training into pulsed NLOS
recovery and scene understanding.

We foresee this work becoming a building block in more rich end-
to-end reconstruction and scene understanding pipelines, making
a step towards conceptually turning every scene surface into a
sensor. The approach may potentially also motivate similar feature-
based reconstruction methods for other challenging inverse problem
domains, e.g., fluid reconstruction, x-ray diffraction imaging, or
computer generated holography.
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