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Low signal-to-noise ratio (SNR) measurements, primarily due to the quartic attenuation of intensity with distance, are
arguably the fundamental barrier to real-time, high-resolution, non-line-of-sight (NLoS) imaging at long standoffs.
To better model, characterize, and exploit these low SNR measurements, we use spectral estimation theory to derive a
noise model for NLoS correlography. We use this model to develop a speckle correlation-based technique for recovering
occluded objects from indirect reflections. Then, using only synthetic data sampled from the proposed noise model,
and without knowledge of the experimental scenes nor their geometry, we train a deep convolutional neural network
to solve the noisy phase retrieval problem associated with correlography. We validate that the resulting deep-inverse
correlography approach is exceptionally robust to noise, far exceeding the capabilities of existing NLoS systems both in
terms of spatial resolution achieved and in terms of total capture time. We use the proposed technique to demonstrate
NLoS imaging with 300µm resolution at a 1 m standoff, using just two 1/8th s exposure-length images from a standard
complementary metal oxide semiconductor detector. © 2020 Optical Society of America under the terms of the OSA Open

Access Publishing Agreement
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1. INTRODUCTION

Non-line-of-sight (NLoS) imaging recovers hidden objects from
light scattered off these objects onto other surfaces in the scene; in
essence, it lets us use a rough wall as a mirror. Although the majority
of NLoS imaging methods have exploited time-of-travel informa-
tion [1–12], recent work has demonstrated that spatial correlations
in scattered light (speckle) contain sufficient information to image
such hidden objects [13–15]. These methods recover the latent
image of the hidden object by solving variations of a phase retrieval
(PR) problem. While speckle-based methods achieve unprec-
edented results in high-flux illumination, such approaches struggle
to recover a latent image in photon-starved environments, due
in large part to the poorly understood noise characteristics of the
correlation process. This shortcoming limits existing methods to
long acquisition times and small standoff distances d .

In this paper, we examine the NLoS imaging problem illus-
trated in Fig. 1. The objective is to recover a spatially resolved image
of a target hidden behind the corner. To this end, we indirectly illu-
minate the target using continuous-wave (CW) laser light scattered
off a section of the visible wall (dubbed the virtual source), and
record the object returns incident on another section of the visible

wall (dubbed the virtual detector). This configuration causes the
hidden object’s albedo, r , to be encoded in the distribution of the
speckle pattern incident on the virtual detector. By analyzing spa-
tial correlations in the speckle image, we can estimate the albedo’s
autocorrelation, r ? r . With this estimate in hand, we use a PR
algorithm to recover r using the following relationship:

F(r ? r )= |F(r )|2, (1)

where F denotes the Fourier transformation and the square is
taken elementwise.

Although details differ in how r ? r is encoded and estimated,
this basic Fourier relationship is what underlies nearly all cor-
relation imaging techniques [13,15–19], including NLoS
correlography [14]. NLoS correlography is described in detail
in Section 3.

While correlation imaging techniques provide a novel approach
to the challenging NLoS problem, their performance is limited
by the same d4 intensity falloff that affects all NLoS methods.
Note that because of eye safety limitations, this falloff cannot be
overcome simply by increasing the laser power. Similarly, reducing
the falloff to d2 by colocating the illumination source and the
hidden object, as was done in previous correlation-based NLoS
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Fig. 1. NLoS imaging setup. A camera uses light scattered off of a
rough wall, known as a virtual detector, to reconstruct an image of the
hidden object. When using a continuous-wave laser, the camera records
speckle. Inset, NLoS correlography estimates an object’s autocorrelation
using speckle images. It then uses this autocorrelation estimate to recover
the object’s shape by solving a PR problem.

experiments [13,15], is impractical for the vast majority of NLoS
use cases. Thus, real-time NLoS imaging at even moderate stand-
off distances is fundamentally a low-flux problem. As we will
demonstrate in Section 6, existing PR methods [20–28] are too
slow and sensitive to successfully operate in these photon-starved
environments.

Deep-learning has recently achieved state-of-the-art perform-
ance on a range of challenging imaging inverse problems, such as
super-resolution microscopy [29,30], lensless imaging [31], ghost
imaging [32], and imaging through scattering media [33–36].
However, these existing approaches depend on large supervised
training data and generally use shift-variant loss functions that do
not translate to the NLoS correlography problem, Eq. (1). While
we tackle the latter by introducing translation-invariant loss func-
tions, acquiring training data experimentally is infeasible (consider
the large combinatorial space of potential hidden scenes). To lift
this limitation, we derive an accurate noise model for the NLoS
correlography PR problem, which enables us to generate accurate
training data synthetically. With the training data in hand, we
propose and validate a learned reconstruction approach to NLoS
correlography in the low-flux regime. In doing so, we make the
following contributions.

• We use results from spectral density estimation to analyze the
distribution of the noise associated with NLoS correlography.

• We propose a new approach for generating PR training data,
without the need of experimental acquisition or modeling scene
semantics.

• We propose a new mapping for the PR problem and propose
and analyze several new, translation-invariant loss functions for
learning-based PR.

• We validate our CNN on experimental NLoS imaging data,
where it proves to be far faster and more robust than traditional
methods; it enables reconstructions at a 300 µm resolution at 1 m
standoff, using just two 1/8 s exposure-length images.

A. Strengths and Limitations

In contrast to most NLoS imaging methods, our approach requires
only standard CW laser sources and complementary metal oxide
semiconductor (CMOS) sensors, solves the reconstruction prob-
lem in a fraction of a second, and does not need to know the
location of the virtual source and detector. This significantly
enhances the utility and practicality of our approach, bypassing
the need for ultrafast sources and detectors, computationally
expensive techniques for recovering a latent image from mea-
surements, and impractical calibration steps. On the flip side,
like other correlation-based methods and unlike time-of-travel-
based techniques, our technique is best suited for imaging small
isolated objects within the hidden volume; large objects lie out-
side the range of the memory effect [37] and so do not cause the
self-interference upon which correlation-based techniques rely.
Likewise, because of the translation invariance of the PR problem,
our system is unable to localize the position of the objects within
the hidden volume.

2. RELATED WORK

A. Impulse Non-Line-of-Sight Imaging

Kirmani et al. [1] first described the concept of imaging occluded
objects using temporally coded measurement in which short pulses
of light are captured propagating through the scene at the speed
of light. These transient “light in flight” measurements are the
temporal impulse response of light transport, and Abramson [38]
first demonstrated a capture system for transient imaging. Velten
et al. [2] showed the first experimental NLoS imaging results using
a femtosecond laser and streak camera system to capture transient
images. Building on these seminal works, a large body of work
has explored impulse NLoS imaging [3–12], much of which is
reviewed in Ref. [39]. These methods require detectors capable of
high temporal resolution sampling to allow for impulse probing
of the temporal light transport in the scene. Although the streak
camera setup from Velten et al. [2] is essentially a decade-old tech-
nology, it allows for temporal precision of <10 ps. However, the
high instrumentation cost and sensitivity of these experimental
capture systems has sparked an interest in single photon avalanche
diodes (SPADs) as a detector alternative [7,40]. Although SPAD
detectors can offer resolution <10 ps [41], comparable to streak
camera setups, they typically suffer from low fill factors typically
around a few percent [42] and spatial resolution in the kilopixel
range [43]. Compared to ubiquitous intensity sensors with pixel
arrays of >10 megapixel and more, SPAD detectors are orders of
magnitude less photon-efficient and more expensive.

Recently, a combination of noise robust algorithms [11,12] and
extremely powerful illumination have moved these systems closer
to real-time rates; using an illumination source with a peak power
nearly 10000× our own, [11] produced room-sized reconstruc-
tions in under 30 s. Additionally, Ref. [9] demonstrated real-time
reconstructions of retroreflective objects; retroreflectors experience
only a d2 intensity falloff with confocal measurements [7].

B. Correlation Non-Line-of-Sight Imaging

Instead of directly acquiring transient transport measurements,
a further line of research explores indirect coding using time-of-
flight sensors [44–47]. Time-of-flight cameras capture correlation
measurements of amplitude-modulated light, which encodes travel
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time via the phase shift of the amplitude-modulated illumination.
Although these cameras are readily available as consumer prod-
ucts, such as Microsoft’s Kinect One, existing pixel technology
offers only limited modulation bandwidths of around 100 MHz,
truncating the effective temporal resolution to the nanosecond
range.

Recently, an exciting line of work [13,15,19], loosely based off
of ideas first developed in [37,48], has explored using correlations
in the carrier wave itself, instead of amplitude modulation. This
approach enables the use of conventional intensity sensors, while
offering high modulation bandwidths in the THz range. Although
seemingly a solution to the bandwidth and detector limitations
of previous methods, existing approaches have been limited to
scenes at microscopic scales [15] and lab setups with ambient light
completely eliminated and have colocated the hidden object and
the illumination source.

In this paper, we demonstrate a method that overcomes these
issues by relying on temporally and spatially coherent measure-
ments and a robust reconstruction framework, together allowing
us to achieve photon-efficient NLoS imaging in the presence of
strong ambient light and at large distances. A comparison of the
two methods is provided in Section 3 of Supplement 1.

C. Non-Line-of-Sight Tracking

Recently, a number of methods for the orthogonal task of tracking
and/or classifying occluded objects have been demonstrated using
intensity measurements only [49–56]. Although these methods
also rely on conventional intensity sensors, most are restricted to
coarse localization tasks and often assume known object classes and
scene geometries or require colocating the hidden object and the
illumination source.

D. Traditional Phase Retrieval Algorithms

PR solves the problem of recovering a signal from a measurement
of its Fourier magnitude (modulus). As the phase is lost in the mea-
surement, this inverse problem is ill-posed in general. However, if
the measurements are oversampled sufficiently, in theory, phase
can be perfectly recovered by solving a set of nonlinear equations
[57]. Together with an assumption on a nonzero support of the
real-valued signal, practical error reduction methods have been
designed [20] for a plethora of applications in optics, crystallogra-
phy, biology, and physics. A popular extension of this algorithm is
the hybrid input–output (HIO) method [21] and its various relax-
ations [22,58]. Recently, two major lines of research have explored
alternating direction methods for PR [23,59], and overcoming the
nonconvex nature of PR through convex relaxations [60].

E. CNN-Based Phase Retrieval Algorithms

Only very recently, deep neural networks have been explored for
solving PR. Most previous attempts to apply convolutional neural
networks (CNNs) to PR have been application specific. CNNs
have been applied to ptychography [61,62], holography [63],
quantitative phase microscopy [64,65], and coherent diffraction
imaging (CDI) [66,67]. Among these works, the CDI approaches
are the closest to our own.

There have also been attempts to use CNNs as regularizers
within a PR optimization problem [68]. Unfortunately, these
techniques require accurate initializations to succeed, which are

not available in the very low signal-to-noise ratio (SNR) regimes
characteristic of NLoS imaging.

3. NON-LINE-OF-SIGHT CORRELOGRAPHY

A. Principles of Operation

The canonical NLoS imaging geometry of Fig. 1 will be used to
introduce and develop the mathematical concepts underlying
NLoS imaging. In this setup, a quasi-monochromatic laser source
illuminates a portion of the visible wall, which we dub the “virtual
source.” Laser light scattered by the optically rough virtual source
surface propagates towards the hidden object. Due to the coher-
ence of the laser source, the hidden object is illuminated by a fully
developed speckle pattern, characterized by randomized construc-
tive and destructive interference. A fraction of the light incident on
the object is redirected (reflected and scattered) towards a second
section of the visible wall, which we dub the “virtual detector.”
A camera observing the virtual detector surface records the light
reflected and scattering by the object. By scanning the position
of the virtual source, a second statistically independent speckle
realization is used to indirectly illuminate the hidden object. The
corresponding camera image of the virtual detector surface, which
is itself a low-contrast speckle pattern, is recorded. Using two or
more measurements of this form, the autocorrelation of the hidden
object’s albedo is estimated, and the albedo is reconstructed by
solving a PR problem.

B. Measurement Model

In this section, we provide details of the NLoS correlography mea-
surement process, seeking to identify the (idealized) probability
distribution associated with each measurement. We denote the
complex-valued optical fields incident and emitted by the virtual
source, hidden object, and virtual detector with the variables
EVSin , EVSout, E Oin , E Oout , and EVDin , respectively. We index
spatial locations on the virtual source, the hidden object, and
the virtual detector using xVS, xO , and xVD, respectively. In the
interest of mathematical simplicity, we assume that the distances
between the virtual source, object, and virtual detector are such
that propagation between them can be modeled by the Fraunhofer
approximation, i.e., proportional to a Fourier transformation. The
propagation operator may be generalized to Fresnel propagation
by absorbing the quadratic phase factors intrinsic to propagation
within the fields being propagated, without affecting the outcome
of our analysis. We additionally assume that the virtual source
surface is illuminated by a collimated beam at normal incidence
so that

EVSin(xVS)= 1. (2)

The optically rough virtual source scrambles the phase of the
light emerging from the virtual source surface, so that

EVSout(xVS)= e jθVSout (xVS), (3)

where the phase term θVSout is uniformly distributed over the
interval [0, 2π ] and where the autocorrelation function of the
phase term is a Dirac delta function. Thus, for xVS,1 6= xVS,2,
EVSout(xVS,1) and EVSout(xVS,2) are uncorrelated with respect to
the distribution of θVSout .

The field emerging from the virtual source then undergoes far-
field propagation on its way to the object, which can be modeled

https://doi.org/10.6084/m9.figshare.11343968
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by a Fourier transformation. Accordingly, the field incident on the
hidden object is

E Oin ∝F(EVSout), (4)

whereF denotes the Fourier transform operator.
From the central limit theorem, the independence of the fields

at different locations of EVSout , and the orthonormality of the
Fourier transform, we have that, for all xO , E Oin(xO) follows
a circular Gaussian distribution with autocorrelation function
σ 2δ(1xO) for some constantσ 2.

Each location on the object modulates the incoming field
according to the albedo of the hidden object. Thus,

E Oout(x0)= E Oin(xO)r (xO), (5)

and E Oout(x0) follows a circular Gaussian distribution with
autocorrelation function rσ 2δ(1xO).

The field emerging from the object propagates towards the vir-
tual detector, in accordance with the far-field propagator. Thus,

EV Din ∝F(E Oout). (6)

The camera then images the virtual detector. If we assume
that the camera has infinite aperture and the virtual detector has
uniform albedo, we have

I ∝ |F(E Oout)|
2. (7)

One can illuminate different locations on the virtual source to
capture independent measurements that follow Eq. (7). Images
can additionally be subdivided into nonoverlapping patches
and treated independently, e.g., a 2000× 2000 image can be
subdivided into 25 independent 400× 400 patches [18,69].

C. Autocorrelation Estimation

Correlography takes measurements that follow the distribu-
tion specified by Eq. (7) and recovers the hidden object’s albedo
using the following two equalities. These equalities are derived
in Section 1 in Supplement 1 and are based on the law of large
numbers,

lim
N→∞

1

N

N∑
n=1

|F−1(In)|
2
= r ? r (1xO)

+ δ(1xO)

[∫
∞

x1=−∞

r (x1)dx1

]2

,

(8)

and

lim
N→∞

∣∣∣∣∣ 1

N

N∑
n=1

F−1(In)

∣∣∣∣∣
2

= δ(1xO)

[∫
∞

x1=−∞

r (x1)dx1

]2

. (9)

By subtracting Eq. (9) from Eq. (8), we are left with an unbiased
estimate of r ? r , which we denote with r̂ ? r . An example of such
an estimate is shown in Fig. 2(c).

The autocorrelation is related to the Fourier magnitudes of
r through Eq. (1). Thus, by taking the Fourier transform of our
estimate of r ? r and then applying a PR algorithm to the result,
we can recover an estimate of the albedo r . An example of one such

Fig. 2. Long-exposure NLoS correlography example. 25 nonover-
lapping 400× 400 speckle subimages were drawn from each of 50
distinct, 1 s exposure-length speckle images. These subimages were then
used to estimate the hidden object’s autocorrelation (middle) using
Eqs. (8) and (9). HIO [21] was then used to reconstruct the object’s
albedo (right). (a) Hidden object; (b) speckle subimage; (c) estimate of
r ? r ; (d) estimate of r .

Fig. 3. Short-exposure NLoS correlography example. 25 nonover-
lapping 400× 400 speckle subimages were drawn from each of 2 distinct,
1/8 s exposure-length speckle images. These subimages were then used to
estimate the hidden object’s autocorrelation (middle) using Eqs. (8) and
(9). HIO [21] was then used to reconstruct the object’s albedo (right).
(a) Hidden object; (b) speckle subimage; (c) estimate of r ? r ; (d) estimate
of r .

reconstruction, recovered using the HIO algorithm [21], is shown
in Fig. 2(d).

Figures 3(c) and 3(d) repeat this experiment using two short
exposure measurements, which produce a much noisier autocorre-
lation estimate: HIO fails to recover any structure in this context.
Understanding and overcoming this noise is the key to enabling
real-time NLoS imaging with correlography.

4. CORRELOGRAPHY NOISE MODEL

This section describes the fluctuations of r̂ ? r due to various
sources of noise in the measurement process.

A. Distribution of the Autocorrelation Estimate

In practice, for locations 1x 6= 0, Eq. (8) is much greater than
Eq. (9). Thus, for1x 6= 0,

r̂ ? r (1x )≈
1

N

N∑
n=1

|F−1 In|
2(1x ).

The expression 1
N

∑N
n=1 |F−1 In|

2 is the average of N i.i.d.
random variables. From the central limit theorem, the elements of
1
N

∑N
n=1 |F−1 In|

2 follow a Gaussian distribution. Therefore, for
1x 6= 0

r̂ ? r (1x )∼N (µ(1x ), σ 2(1x ))

for some meanµ(1x ) and varianceσ 2(1x ).
Next, we note that 1

N

∑N
n=1 |F−1 In|

2 is the average of
N periodograms of the speckle images (because In is real,
|F−1 In|

2
= |F In|

2). In the context of power spectral density

https://doi.org/10.6084/m9.figshare.11343968
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(PSD) estimation, averaging together multiple periodograms is
known as Bartlett’s procedure. Recognizing this fact allows us to
rely upon existing theory to analyze r̂ ? r .

Bartlett’s procedure produces an unbiased estimate of the true
PSD, S(1x ). Moreover, if we assume In follows a Gaussian distri-
bution, the pointwise variance of this estimate is proportional to
1
N S2(1x ) [70]. The assumption is justified because In follows a
noncentral chi-squared distribution with M degrees of freedom,
where M denotes the dimension of the signal and, for large M, this
can be approximated by a Gaussian distribution [71]. In summary,
for1x 6= 0, we have

r̂ ? r (1x )∼N (S(1x ), γ
1

N
S2(1x )), (10)

where S(1x ) is the PSD of the speckle at1x and γ is some con-
stant.

B. Sources of Noise

Multiple sources of noise and bias influence the NLoS correlogra-
phy measurement process, the most important of which are

1. Finite-sample approximation error: Using a few samples
(small N) will increase the variance of r̂ ? r . It has no affect on
the PSD of the speckle.

2. Photon noise: When dealing with weak, third bounce signals,
Poisson shot noise shows up on the measurement In . This shot
noise is white and will add a uniform offset to S(1x ).

3. Ambient illumination: The measurements capture light
not only from the hidden object, but also from walls, floors,
and clutter in the scene. This shows up as both a diffuse
background and uncorrelated shot noise in the speckle the
measurements. The diffuse background will add a peak
at S(1x = 0), and the shot noise adds a uniform offset to
S(1x ).

4. Finite apertures: The finite apertures of both the camera and
the virtual detector mean that our measurements are low-pass
filtered. This band limits the PSD of the speckle.

Combining these sources of noise, we get

S(1x )= H(r ? r (1x )+ b),

where H(·) is the aperture’s low-pass transfer function and b is an
offset accounting for the shot noise (both from the hidden object
and the background). Assuming our camera has a sufficiently large
aperture, this model simplifies to

S(1x )= r ? r (1x )+ b.

Combining this result with Eq. (10), with some slight abuse of
notation, we have

r̂ ? r (1x )≈N (r ? r (1x )+ b, γ
1

N
(r ? r (1x )+ b)2)

≈ r ? r (1x )+N (0,
γ

N
(r ? r (1x ))2)+N

(
b,
γ

N
b2
)

. (11)

In the above equation, we eliminate the variance’s cross terms by
assuming that, on the support of r ? r (1x ), r ? r (1x )� b.

In this expression, the signal-dependent, space-varying noise
(second term) is due primarily to finite-sample approximation
error. Figure 4(d) illustrates what happens when too few high SNR

Fig. 4. Spending the photon budget. Simulated autocorrelation
estimates of a Lambertian 1 cm× 1 cm letter “V” using (b) 100, 0.1 s
measurements; (c) 10, 1 s measurements; and (d) 1, 10 s measure-
ment. With many short-exposure measurements, the spatially invariant
noise dominates. With too few measurements, shot-noise-like signal-
dependent noise from the finite-sample error dominates. (a) Ground
truth; (b) 100 × .1; (c) 10 × 1; (d) 1 × 10.

measurements are used to estimate r̂ ? r ; error-type 1 dominates,
and shot-noise-like, strongly signal-dependent noise shows up in
the estimate.

In contrast, the offset and the spatially invariant noise (third
term) are due primarily to the shot noise. Figure 4(b) illustrates
the case when many low SNR measurements with significant shot
noise components are used to estimate r̂ ? r ; error type 2 domi-
nates, and an offset and uniform Gaussian noise appears in the
estimate.

Finally, Fig. 4(c) demonstrates that for a large-enough photon
budget, there is a Goldilocks zone wherein the shot-noise in the
measurements is reduced but there are still enough samples to
avoid finite-sample approximation error. Photons budgets should
be spent so as to operate in this regime. In this paper, we found our
photon budget was best spent capturing just two high-resolution
speckle images (each broken into 64 smaller image patches,
resulting in N = 128).

C. Validating the Noise Model

To further validate the proposed noise model, we inspect a series of
experimental autocorrelation estimates, which were formed with
a varying number of speckle images and with a variety of exposure
times. For each autocorrelation estimate, we consider the statistics
of a 20× 20 patch in the top-left corner of the estimate, which,
by visual inspection, contains no signal component. Our model
predicts that, across estimates, such regions should be distributed
according toN (b, γN b2). Assuming these regions are ergodic, they
should exhibit a similar distribution across the pixels of a single
estimate.

0 0.1 0.2
0

0.5

1
10 -3

0 0.1 0.2
0

0.02

0.04

0.06

Fig. 5. Distribution of experimental autocorrelation estimates.
Variance versus mean with varying exposure and fixed N = 128 (left)
and variance over mean with fixed exposure and a varying N (right). As
predicted by our model Eq. (11), the variance of our r ? r estimate grows
quadratically with respect to its mean, and the ratio between the variance
and mean grows linearly with respect to 1

N .
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Fig. 6. Unstructured training data. Examples of images formed with
a Canny edge detector (top) and their associated noisy autocorrelations
(bottom).

In Fig. 5, we plot the variance and mean of these patches (across
pixels). We observe that as the mean increases the variance grows
quadratically, as predicted. Furthermore, we see that as we reduce
the number of speckle images used to form the estimates (N),
the ratio between the variance and mean of the patches grows
proportionally to 1

N , as predicted.

5. LEARNING PHASE RETRIEVAL

As mentioned before, existing PR algorithms are not up to the task
of solving the noisy PR problem associated with low-light NLoS
correlography. In this section, we describe how we applied a CNN
to the problem.

A. Training Datasets

Deep learning is a powerful tool for solving computational imaging
problems, but requires vast quantities of training data to succeed.
In the context of NLoS imaging, this training data is very hard to
come by experimentally. Therefore, we leverage the noise model
developed in the previous section to synthesize training data.

We generated training data consisting of r , r̂ ? r pairs, where
the r̂ ? r examples were synthesized according to Eq. (11) with
b = 70 and γ

N = 0.015, where elements of r are scaled such that
max(r ? r )= 255. These parameters were chosen by fitting the
noise model to the mean (b) and variance ( γN b2) of a 20× 20 patch
from the top left corner of the autocorrelation estimate formed by a
1/8 s exposure measurement.

The dataset used for r determines what priors the network
learned about the problem—and how well it generalizes to dif-
ferent problems. In this paper, we train a CNN using a dataset of
sparse, “unstructured” images (at the SNRs we are interested in,
reconstructing dense, “natural image” scenes is infeasible). This
dataset was formed by passing the Berkeley Segmentation Dataset
500 [72] through a Canny edge detector and then cropping to form
a dataset of roughly 20000064× 64 images with sparse edges. The
images in this dataset are connected and sparse, but otherwise lack
much structure. See Fig. 6.

B. Loss Function

One challenge in learning PR is that with Fourier measurement
operators, PR is invariant to translations. Thus, training a neural
network using a loss that is not invariant, such as the `1 or `2 dis-
tance between r and r̂ , would force the network to not only solve
the PR problem but also memorize the locations of all the training
data.

Fig. 7. Noisy estimates of (a) r ? r, (b) |F(r)| and (c) the associated
r. r ? r and r share similar features whereas |F(r )| and r , for the most
part, do not.

To avoid this, we experimented with four different trans-
lation invariant losses: ‖ r̂ ? r̂ − r ? r‖1, ‖ r̂ ? r̂ − r ? r‖2,
‖ |F(r̂ )| − |F(r )|‖1, and ‖ |F(r̂ )| − |F(r )|‖2, where r̂ denotes
the networks estimate of r . We found that the loss ‖ r̂ ? r̂ − r ? r‖1

converged quicker than the others but that all four losses eventu-
ally produced similar solutions (the Pearson correlation coefficient
may also have been effective [66]). See Figures S1 and S2 in
Supplement 1. We use ‖ r̂ ? r̂ − r ? r‖1 as the loss function
throughout the rest of the paper.

C. Choosing the Mapping

Although in principle a CNN can learn almost arbitrary mappings
between a measurement of r and the signal r , certain mappings are
easier to learn than others. Neural networks with skip or residual
connections excel at learning identity-like mappings [73]. As
illustrated in Fig. 7, the mapping from r ? r to r is much closer to
an identity mapping (r ? r and r share similar features) than the
mapping from |F(r )| to r is. As such, we found that networks
trained to recover r from an estimate of its autocorrelation did
much better than those trained to reconstruct it from an estimate of
its Fourier magnitudes.

D. CNN Architecture

We used the well-known U-net architecture as our CNN [74].
Our U-net consists of 12 convolutional layers, each with between
64 and 512 channels. The U-net is essentially a convolutional
autoencoder with a large number of skip connections between
its layers. While originally designed for segmentation, it has
been applied successfully to a range of imaging inverse problems,
such as the reconstruction of medical images [75] and low-light
denoising [76].

E. Implementation and Training Details

Our network was implemented in PyTorch. We used a batch size
of 32. We trained for 400 epochs at a learning rate starting at 0.002
and decaying to 0.000001, using the ADAM optimizer [77]. It
took a little over a day to train the network using an Nvidia Titan
RTX GPU. (Our code is available at [78].)

6. LOW-LIGHT NLoS CORRELOGRAPHY

In this section, we use simulations and experiments to validate the
proposed approach and answer the following question: does the
increased noise robustness afforded by the proposed learned PR
enable real-time NLoS correlography?

https://doi.org/10.6084/m9.figshare.11343968
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Fig. 8. Experimental setup. Light passes from the laser, to the vir-
tual source, to the hidden object, to the virtual detector, and finally to
the camera.

A. Experimental Setup

Our NLoS correlography experimental setup is illustrated in Fig. 8.
A steerable, 500 mW, 532 nm CW laser source (Azur Light Systems
ALS-532) illuminates the virtual source. We operated the laser at
300 mW. A Canon telephoto macrolens with 180 mm focal length
is used to image the virtual detector surface. With this lens, the
image sensor (2056× 2464 pixel Sony IMX 264 monochrome)
has a magnification of about 0.5, a pixel size of 3.45 µm, and an
active area of 8.47 mm× 7 mm. (We removed the camera’s cover
glass to reduce internal reflections.)

We imaged the 1 cm hidden figures from Figs. 2(a) and 3(a),
which had an average fill rate of about 0.2 (they occupy about
0.2 cm2). Our virtual source was 0.5 m from the hidden object,
the hidden object was 1 m from the virtual detector, and the virtual
detector was 0.8 meters from the camera.

B. Radiometric Throughput

Assuming the walls and target have albedo 1 and are perfectly
Lambertian (they are not), the radiometric throughput of our sys-
tem works out to−182 dB. With a 300 mW, 532 nm laser source,
this translates to 2.7 million third bounce photons per second
reaching the detector. These calculations can be found in Section D
in Supplement 1.

C. Phase Retrieval Algorithms

Here we compare our CNN to the projection-based HIO PR
algorithm [21] and the alternating minimization PR algorithm
(Alt-Min) from [24]. Additional results with median truncated
Wirtinger flow (MTWF) [25], truncated amplitude flow (TAF)
[26], truncated Wirtinger flow (TWF) [27], and alternating
direction method of multipliers with a total variation prior
(ADMM-TV) [28] can be found in Section E of Supplement
1. These methods perform no better than HIO.

HIO was run for 2000 iterations with a step size β = .9. The
support was assumed to be 64× 64, out of 128× 128 pixels total.
Alternating minimization was run for 1000 iterations.

D. Recovery Times

With 2 speckle images, estimating the autocorrelation, r̂ ? r , took
1
10 s. From there, HIO took just under 3 s to reconstruct r . The
CNN took a few hundredths of a second. Exposure times, not
processing, are the bottleneck in a CNN-based system.

E. Low-Light Imaging Simulations

Using the throughput estimates from the previous section, we
simulated NLoS correlography with exposure times between 1/4
and 1/256 s using a 300 mW CW laser with hidden objects with a
reflective area of roughly 0.2 cm2. For each of the exposure times,
we captured 2 images, each consisting of 64 patches.
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Fig. 9. Simulated and experimental reconstructions with varying exposure lengths. Because it is more robust to noise, the CNN-based method
can operate with far less light and thus at higher frame rates than a system relying on traditional PR algorithms like HIO [21] or Alt-Min [24]. (The verti-
cal/horizontal lines that can be observed in the experimental short-exposure autocorrelation estimates are the result of correlated, fixed pattern read noise
between pixels. The 7 and F were measured at different orientations.)
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Our simulation results, presented in Fig. 9(a), demonstrate that
for a given laser power, because it is more robust to noise, the CNN-
based method can operate with reduced exposure times, and thus at
higher frame rates.

F. Low-Light Imaging Experiments

We applied the CNN-based PR method to experimental NLoS
imaging data consisting of multiple low exposure measurements of
the objects from Figs. 2(a) and 3(a). Figure 9(b) demonstrates that
the CNN is significantly more robust to noise and offers improved
reconstructions across all operating regimes. The CNN offers
recognizable reconstructions starting around exposure lengths of
1

16 s. Additional results can be found in Supplement 1.

7. CONCLUSION

NLoS correlography promises, in theory, to enable real-time NLoS
imaging at sub-mm resolutions. However, the limitations of exist-
ing PR methods, particularly their sensitivity to noise, prohibit
this. More broadly, because of the quartic attenuation of intensity
with distance, handling low-flux regimes is arguably the funda-
mental barrier to real-time NLoS imaging. This paper makes a step
towards lifting these limitations.

Specifically, we first analyzed the NLoS correlography noise
model. This analysis makes it possible to simulate adequate train-
ing data for learning NLoS correlography problems. Using the
proposed dataset and new loss function, we then trained a CNN
to solve the noisy PR problem. In simulation, we confirmed that
the resulting CNN is computationally efficient and exceptionally
robust to multiple forms of noise, far exceeding the capabilities of
existing algorithms. We validated our approach on experimental
NLoS imaging data and successfully reconstructed the shape of
small hidden objects from a standoff distance of one meter away
using just two 1/8 s exposure-length images captured by a con-
ventional CMOS detector, representing a significant step towards
real-time high-resolution NLoS imaging.

Funding. Defense Advanced Research Projects Agency (Reveal:
HR0011-16-C-0028.).

See Supplement 1 for supporting content.

†These authors contributed equally to this work.

REFERENCES
1. A. Kirmani, T. Hutchison, J. Davis, and R. Raskar, “Looking around the

corner using transient imaging,” in Proceedings of IEEE International
Conference on Computer Vision (2009), pp. 159–166.

2. A. Velten, D. Wu, A. Jarabo, B. Masia, C. Barsi, C. Joshi, E. Lawson, M.
Bawendi, D. Gutierrez, and R. Raskar, “Femto-photography: capturing
and visualizing the propagation of light,” ACM Trans. Graphics 32, 44
(2013).

3. R. Pandharkar, A. Velten, A. Bardagjy, E. Lawson, M. Bawendi, and R.
Raskar, “Estimating motion and size of moving non-line-of-sight objects
in cluttered environments,” in Proc. of IEEE International Conference on
Computer Vision and Pattern Recognition (2011), pp. 265–272.

4. A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. Bawendi, and
R. Raskar, “Recovering three-dimensional shape around a corner using
ultrafast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).

5. O. Gupta, T. Willwacher, A. Velten, A. Veeraraghavan, and R. Raskar,
“Reconstruction of hidden 3D shapes using diffuse reflections,” Opt.
Express 20, 19096–19108 (2012).

6. A. K. Pediredla, M. Buttafava, A. Tosi, O. Cossairt, and A.
Veeraraghavan, “Reconstructing rooms using photon echoes: a plane
based model and reconstruction algorithm for looking around the cor-
ner,” in Proceedings of IEEE International Conference on Computational
Photography (IEEE, 2017).

7. M. O’Toole, D. B. Lindell, and G. Wetzstein, “Confocal non-line-of-
sight imaging based on the light cone transform,” Nature 555, 338–341
(2018).

8. F. Xu, G. Shulkind, C. Thrampoulidis, J. H. Shapiro, A. Torralba, F. N. C.
Wong, and G. W. Wornell, “Revealing hidden scenes by photon-efficient
occlusion-based opportunistic active imaging,” Opt. Express 26, 9945–
9962 (2018).

9. M. O’Toole, D. B. Lindell, and G. Wetzstein, “Real-time non-line-of-sight
imaging,” in ACM SIGGRAPH 2018 Emerging Technologies (ACM,
2018), paper 14.

10. S. Xin, S. Nousias, K. N. Kutulakos, A. C. Sankaranarayanan, S. G.
Narasimhan, and I. Gkioulekas, “A theory of Fermat paths for non-line-
of-sight shape reconstruction,” in Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition (2019), pp. 6800–6809.

11. X. Liu, I. Guillén, M. La Manna, J. H. Nam, S. A. Reza, T. H. Le, A.
Jarabo, D. Gutierrez, and A. Velten, “Non-line-of-sight imaging using
phasor-field virtual wave optics,” Nature 572, 620–623 (2019).

12. D. B. Lindell, G. Wetzstein, and M. O’Toole, “Wave-based non-line-of-
sight imaging using fast f-k migration,” ACM Trans. Graphics 38, 116
(2019).

13. O. Katz, E. Small, and Y. Silberberg, “Looking around corners and
through thin turbid layers in real time with scattered incoherent light,”
Nat. Photonics 6, 549–553 (2012).

14. A. Viswanath, P. Rangarajan, D. MacFarlane, and M. P. Christensen,
“Indirect imaging using correlography,” in Computational Optical
Sensing and Imaging (Optical Society of America, 2018), paper CM2E–
3.

15. O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot
imaging through scattering layers and around corners via speckle corre-
lations,” Nat. Photonics 8, 784–790 (2014).

16. P. S. Idell, J. R. Fienup, and R. S. Goodman, “Image synthesis from non-
imaged laser-speckle patterns,” Opt. Lett. 12, 858–860 (1987).

17. J. R. Fienup and P. S. Idell, “Imaging correlography with sparse arrays of
detectors,” Opt. Eng. 27, 279778 (1988).

18. P. S. Idell, J. D. Gonglewski, D. G. Voelz, and J. Knopp, “Image synthesis
from nonimaged laser-speckle patterns: experimental verification,” Opt.
Lett. 14, 154–156 (1989).

19. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P.
Mosk, “Non-invasive imaging through opaque scattering layers,” Nature
491, 232–234 (2012).

20. R. W. Gerchberg, “A practical algorithm for the determination of phase
from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

21. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21,
2758–2769 (1982).

22. H. H. Bauschke, P. L. Combettes, and D. R. Luke, “Hybrid projection-
reflection method for phase retrieval,” J. Opt. Soc. Am. A 20, 1025–1034
(2003).

23. S. Marchesini, Y.-C. Tu, and H.-T. Wu, “Alternating projection, ptycho-
graphic imaging and phase synchronization,” Appl. Comput. Harmon.
Anal. 41, 815–851 (2016).

24. P. Netrapalli, P. Jain, and S. Sanghavi, “Phase retrieval using alternating
minimization,” in Advances in Neural Information Processing Systems
(2013), pp. 2796–2804.

25. H. Zhang, Y. Chi, and Y. Liang, “Provable non-convex phase retrieval
with outliers: median truncated Wirtinger flow,” in Proc. International
Conference onMachine Learning (2016), pp. 1022–1031.

26. G. Wang, G. B. Giannakis, and Y. C. Eldar, “Solving systems of random
quadratic equations via truncated amplitude flow,” IEEE Trans. Inf.
Theory 64, 773–794 (2018).

27. Y. Chen and E. Candes, “Solving random quadratic systems of equa-
tions is nearly as easy as solving linear systems,” in Advances in Neural
Information Processing Systems (2015), pp. 739–747.

28. F. Heide, S. Diamond, M. Nießner, J. Ragan-Kelley, W. Heidrich, and G.
Wetzstein, “Proximal: efficient image optimization using proximal algo-
rithms,” ACM Trans. Graphics 35, 84 (2016).

29. Y. Rivenson, Z. Göröcs, H. Günaydin, Y. Zhang, H. Wang, and A. Ozcan,
“Deep learning microscopy,” Optica 4, 1437–1443 (2017).

https://doi.org/10.6084/m9.figshare.11343968
https://doi.org/10.6084/m9.figshare.11343968
https://doi.org/10.1145/2461912
https://doi.org/10.1038/ncomms1747
https://doi.org/10.1364/OE.20.019096
https://doi.org/10.1364/OE.20.019096
https://doi.org/10.1038/nature25489
https://doi.org/10.1364/OE.26.009945
https://doi.org/10.1038/s41586-019-1461-3
https://doi.org/10.1145/3306346
https://doi.org/10.1038/nphoton.2012.150
https://doi.org/10.1038/nphoton.2014.189
https://doi.org/10.1364/OL.12.000858
https://doi.org/10.1117/12.7976761
https://doi.org/10.1364/OL.14.000154
https://doi.org/10.1364/OL.14.000154
https://doi.org/10.1038/nature11578
https://doi.org/10.1364/AO.21.002758
https://doi.org/10.1364/JOSAA.20.001025
https://doi.org/10.1016/j.acha.2015.06.005
https://doi.org/10.1016/j.acha.2015.06.005
https://doi.org/10.1109/TIT.2017.2756858
https://doi.org/10.1109/TIT.2017.2756858
https://doi.org/10.1145/2897824
https://doi.org/10.1364/OPTICA.4.001437


Research Article Vol. 7, No. 1 / January 2020 / Optica 71

30. E. Nehme, L. E. Weiss, T. Michaeli, and Y. Shechtman, “Deep-storm:
super-resolution single-molecule microscopy by deep learning,” Optica
5, 458–464 (2018).

31. A. Sinha, J. Lee, S. Li, and G. Barbastathis, “Lensless computational
imaging through deep learning,” Optica 4, 1117–1125 (2017).

32. F. Wang, H. Wang, H. Wang, G. Li, and G. Situ, “Learning from simula-
tion: an end-to-end deep-learning approach for computational ghost
imaging,” Opt. Express 27, 25560–25572 (2019).

33. Y. Li, Y. Xue, and L. Tian, “Deep speckle correlation: a deep learning
approach towards scalable imaging through scattering media,” Optica
5, 1181–1190 (2018).

34. S. Li, M. Deng, J. Lee, A. Sinha, and G. Barbastathis, “Imaging through
glass diffusers using densely connected convolutional networks,”
Optica 5, 803–813 (2018).

35. Y. Sun, Z. Xia, and U. S. Kamilov, “Efficient and accurate inversion of
multiple scattering with deep learning,” Opt. Express 26, 14678–14688
(2018).

36. M. Lyu, H. Wang, G. Li, S. Zheng, and G. Situ, “Learning-based lens-
less imaging through optically thick scattering media,” Adv. Photon. 1,
036002 (2019).

37. I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation
of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–
2331 (1988).

38. N. Abramson, “Light-in-flight recording by holography,” Opt. Lett. 3,
121–123 (1978).

39. T. Maeda, G. Satat, T. Swedish, L. Sinha, and R. Raskar, “Recent
advances in imaging around corners,” arXiv:1910.05613 (2019).

40. M. Buttafava, J. Zeman, A. Tosi, K. Eliceiri, and A. Velten, “Non-line-of-
sight imaging using a time-gated single photon avalanche diode,” Opt.
Express 23, 20997–21011 (2015).

41. F. Nolet, S. Parent, N. Roy, M.-O. Mercier, S. Charlebois, R. Fontaine,
and J.-F. Pratte, “Quenching circuit and SPAD integrated in CMOS
65 nm with 7.8 ps FWHM single photon timing resolution,” Instruments
2, 19 (2018).

42. L. Parmesan, N. A. Dutton, N. J. Calder, A. J. Holmes, L. A. Grant,
and R. K. Henderson, “A 9.8 µm sample and hold time to amplitude
converter CMOS SPAD pixel,” in 44th European Solid State Device
Research Conference (ESSDERC) (IEEE, 2014), pp. 290–293.

43. Y. Maruyama and E. Charbon, “A time-gated 128 ×128 CMOS SPAD
array for on-chip fluorescence detection,” in Proceedings International
Image SensorWorkshop (IISW) (2011).

44. F. Heide, M. B. Hullin, J. Gregson, and W. Heidrich, “Low-budget tran-
sient imaging using photonic mixer devices,” ACM Trans. Graphics 32,
45 (2013).

45. A. Kadambi, R. Whyte, A. Bhandari, L. Streeter, C. Barsi, A. Dorrington,
and R. Raskar, “Coded time of flight cameras: sparse deconvolution to
address multipath interference and recover time profiles,” ACM Trans.
Graphics 32, 167 (2013).

46. F. Heide, L. Xiao, W. Heidrich, and M. B. Hullin, “Diffuse mirrors: 3D
reconstruction from diffuse indirect illumination using inexpensive time-
of-flight sensors,” in Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition (2014), pp. 3222–3229.

47. A. Kadambi, H. Zhao, B. Shi, and R. Raskar, “Occluded imaging with
time-of-flight sensors,” ACM Trans. Graphics 35, 15 (2016).

48. I. Freund, “Looking through walls and around corners,” Phys. A 168,
49–65 (1990).

49. J. Klein, C. Peters, J. Martín, M. Laurenzis, and M. B. Hullin, “Tracking
objects outside the line of sight using 2D intensity images,” Sci. Rep. 6,
32491 (2016).

50. P. Caramazza, A. Boccolini, D. Buschek, M. Hullin, C. F. Higham, R.
Henderson, R. Murray-Smith, and D. Faccio, “Neural network identi-
fication of people hidden from view with a single-pixel, single-photon
detector,” Sci. Rep. 8, 11945 (2018).

51. S. Chan, R. E. Warburton, G. Gariepy, J. Leach, and D. Faccio, “Non-
line-of-sight tracking of people at long range,” Opt. Express 25,
10109–10117 (2017).

52. K. L. Bouman, V. Ye, A. B. Yedidia, F. Durand, G. W. Wornell, A. Torralba,
and W. T. Freeman, “Turning corners into cameras: principles and meth-
ods,” in Proceedings of IEEE International Conference on Computer
Vision (2017), Vol. 1, pp. 8.

53. B. M. Smith, M. O’Toole, and M. Gupta, “Tracking multiple objects
outside the line of sight using speckle imaging,” in Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition (2018),
pp. 6258–6266.

54. M. Tancik, G. Satat, and R. Raskar, “Flash photography for data-driven
hidden scene recovery,” arXiv:1810.11710 (2018).

55. C. Saunders, J. Murray-Bruce, and V. K. Goyal, “Computational
periscopy with an ordinary digital camera,” Nature 565, 472–475 (2019).

56. M. Batarseh, S. Sukhov, Z. Shen, H. Gemar, R. Rezvani, and A. Dogariu,
“Passive sensing around the corner using spatial coherence,” Nat.
Commun. 9, 3629 (2018).

57. R. Bates, “Fourier phase problems are uniquely solvable in mute than
one dimension. I: underlying theory,” Optik (Stuttgart) 61, 247–262
(1982).

58. D. R. Luke, “Relaxed averaged alternating reflections for diffraction
imaging,” Inverse Probl. 21, 37 (2004).

59. Z. Wen, C. Yang, X. Liu, and S. Marchesini, “Alternating direction meth-
ods for classical and ptychographic phase retrieval,” Inverse Probl. 28,
115010 (2012).

60. E. J. Candes, T. Strohmer, and V. Voroninski, “Phaselift: exact and sta-
ble signal recovery from magnitude measurements via convex program-
ming,” Commun. Pure Appl. Math. 66, 1241–1274 (2013).

61. A. Kappeler, S. Ghosh, J. Holloway, O. Cossairt, and A. Katsaggelos,
“Ptychnet: CNN based Fourier ptychography,” in Proceedings of
IEEE International Conference on Image Processing (IEEE, 2017),
pp. 1712–1716.

62. L. Boominathan, M. Maniparambil, H. Gupta, R. Baburajan, and K. Mitra,
“Phase retrieval for Fourier ptychography under varying amount of mea-
surements,” arXiv:1805.03593 (2018).

63. Y. Rivenson, Y. Zhang, H. Günaydın, D. Teng, and A. Ozcan, “Phase
recovery and holographic image reconstruction using deep learning in
neural networks,” Light Sci. Appl. 7, 17141 (2018).

64. Z. Kemp, “Propagation based phase retrieval of simulated intensity
measurements using artificial neural networks,” J. Opt. 20, 045606
(2018).

65. M. R. Kellman, E. Bostan, N. Repina, M. Lustig, and L. Waller, “Physics-
based learned design: optimized coded-illumination for quantitative
phase imaging,” arXiv:1808.03571 (2018).

66. A. Goy, K. Arthur, S. Li, and G. Barbastathis, “Low photon count phase
retrieval using deep learning,” Phys. Rev. Lett. 121, 243902 (2018).

67. M. J. Cherukara, Y. S. Nashed, and R. J. Harder, “Real-time coherent
diffraction inversion using deep generative networks,” Sci. Rep. 8,
16520 (2018).

68. C. A. Metzler, P. Schniter, A. Veeraraghavan, and R. G. Baraniuk,
“prDeep: robust phase retrieval with a flexible deep network,” in
Proceedings International Conference on Machine Learning (2018),
pp. 3498–3507.

69. J. Fienup (private communication, 2017).
70. P. Welch, “The use of fast Fourier transform for the estimation of power

spectra: a method based on time averaging over short, modified
periodograms,” IEEE Trans. Audio Electroacoust. 15, 70–73 (1967).

71. R. J. Muirhead, Aspects of Multivariate Statistical Theory (Wiley, 2009),
Vol. 197.

72. D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human
segmented natural images and its application to evaluating segmen-
tation algorithms and measuring ecological statistics,” in Proceedings
of IEEE International Conference on Computer Vision (2001), Vol. 2,
pp. 416–423.

73. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of IEEE International Conference on
Computer Vision and Pattern Recognition (2016), pp. 770–778.

74. O. Ronneberger, P. Fischer, and T. Brox, “U-net: convolutional networks
for biomedical image segmentation,” in International Conference on
Medical image computing and computer-assisted intervention (Springer,
2015), pp. 234–241.

75. K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, “Deep convolutional
neural network for inverse problems in imaging,” IEEE Trans. Image
Process. 26, 4509–4522 (2017).

76. C. Chen, Q. Chen, J. Xu, and V. Koltun, “Learning to see in the dark,” in
Proceedings of IEEE International Conference on Computer Vision and
Pattern Recognition (2018).

77. D. P. Kingma and J. Ba, “Adam: a method for stochastic optimization,”
arXiv:1412.6980 (2014).

78. https://github.com/ricedsp/Deep_Inverse_Correlography

https://doi.org/10.1364/OPTICA.5.000458
https://doi.org/10.1364/OPTICA.4.001117
https://doi.org/10.1364/OE.27.025560
https://doi.org/10.1364/OPTICA.5.001181
https://doi.org/10.1364/OPTICA.5.000803
https://doi.org/10.1364/OE.26.014678
https://doi.org/10.1117/1.AP.1.3.036002
https://doi.org/10.1103/PhysRevLett.61.2328
https://doi.org/10.1364/OL.3.000121
https://doi.org/10.1364/OE.23.020997
https://doi.org/10.1364/OE.23.020997
https://doi.org/10.3390/instruments2040019
https://doi.org/10.1145/2461912.2461945
https://doi.org/10.1145/2508363.2508428
https://doi.org/10.1145/2508363.2508428
https://doi.org/10.1145/2882845
https://doi.org/10.1016/0378-4371(90)90357-X
https://doi.org/10.1038/srep32491
https://doi.org/10.1038/s41598-018-30390-0
https://doi.org/10.1364/OE.25.010109
https://doi.org/10.1038/s41586-018-0868-6
https://doi.org/10.1038/s41467-018-05985-w
https://doi.org/10.1038/s41467-018-05985-w
https://doi.org/10.1088/0266-5611/21/1/004
https://doi.org/10.1088/0266-5611/28/11/115010
https://doi.org/10.1002/cpa.v66.8
https://doi.org/10.1038/lsa.2017.141
https://doi.org/10.1088/2040-8986/aab02f
https://doi.org/10.1103/PhysRevLett.121.243902
https://doi.org/10.1038/s41598-018-34525-1
https://doi.org/10.1109/TAU.1967.1161901
https://doi.org/10.1109/TIP.2017.2713099
https://doi.org/10.1109/TIP.2017.2713099
https://github.com/ricedsp/Deep_Inverse_Correlography

